Pressure Balanced Float Valve : Model FW

-Operating Conditions:

MODEL		FW										
Nominal Size	mm	15	20	25	32	40	50	65	80	100	125	150
	inch	1/2	3/4	1	1-1/4	1-1/2	2	2-1/2	3	4	5	6
Applicable Fluid		Water										
Working Temperature		0 to $60^{\circ} \mathrm{C}$										
Working Pressure (inlet)		above 0 to 1.0 MPa										
Shell Test Pressure		1.75 MPa										

-Basic Application:

These float valves use the weight and buoyancy of their float to keep water levels constant inside water reservoir tanks.

-Features:

1. Our Float valves come with an adjustable lever that can be adjusted as required, to maintain the desired water level.
2. Our Float valves come with a built-in stainless steel strainer to protect the valve seat and to prevent it from clogging, jamming or overflowing.
3. Our Float valves' unique design can be fitted with a wave suppression pipe to provide wave suppression when requested.
4. Bronze prevents rust contamination of potable water.
5. The polyethylene float never pollutes the drinking water.
6 . The smooth operation of the pressurebalanced mechanism minimizes vibration noise known as water hammer.

OFlow Characteristics:

Pressure Balanced Float Valve : Model FW

-Dimensions:

Nom.size		A	B	C	D	E	L_{1}	L_{2}	J	H	Allowance of J	G	Allowance of G	Length of Lever arm	Float d	Connection Standard
mm	inch															
15	1/2	25	30	27.5	15	27	(348)	(316)	110	200	± 20	(140)	± 20	180	100	JIS B 2061
20	3/4	40	35	33	20	37.5	(422)	(386)	120	239	± 20	(150)	± 20	210	120	
25	1	50	35	36.5	25	53	(470)	(405)	100	224	± 20	(170)	± 20	235	120	
32	1-1/4	50	22	60	25	54.5	(450)	(424)	100	220	± 25	(145)	± 25	235	120	$\begin{gathered} \text { JIS B } 0203 \\ \& \\ \text { BS21 } \end{gathered}$
40	1-1/2	55	23	62	27	60	(495)	(472)	120	257	± 25	(160)	± 25	280	120	
50	2	68	26	72	28	69	(550)	(526)	130	282	± 25	(170)	± 25	280	150	
65	2-1/2	90	30	80.5	46	74	(743)	(700)	150	344	± 30	(220)	± 30	510	150	$\text { JIS B } 0202$
80	3	100	30	87	53	85	(890)	(820)	160	374	± 30	(250)	± 30	615	180	
100	4	130	30	105	70	102	(995)	(960)	220	400	± 30	(310)	± 30	725	180	BS21
125	5	168	34	132.5	92	144	(1300)	(1280)	200	490	± 30	(280)	± 30	800	180/180	
150	6	168	34	132.5	92	144	(1300)	(1280)	200	490	± 30	(280)	± 30	800	180/180	JIS B 2239

OMaterials:

Description	Material
Body	Bronze
Strainer	Stainless Steel
Lever Arm	Stainless Steel(Size:15,20,25,32,40,125,150)
	Brass(Size:50)
	Bronze(Size:65,80,100)
Floats	Polyethylene
Valve Spindle	Brass
Adjustable Connector	Brass
Disc	NBR

※ Copper float is available.

-Operating Conditions:

MODEL		FW										
Nominal Size	mm	15	20	25	32	40	50	65	80	100	125	150
	inch	1/2	3/4	1	1-1/4	1-1/2	2	2-1/2	3	4	5	6
Applicable Fluid		Water										
Working Temperature		0 to $60^{\circ} \mathrm{C}$										
Working Pressure (inlet)		above 0 to 1.0 MPa										
Shell Test Pressure		1.75 MPa										

-Basic Application:

These float valves use the weight and buoyancy of their float to keep water levels constant inside water reservoir tanks.

-Features:

1. Our Float valves come with an adjustable lever that can be adjusted as required, to maintain the desired water level.
2. Our Float valves come with a built-in stainless steel strainer to protect the valve seat and to prevent it from clogging, jamming or overflowing.
3. Our Float valves' unique design can be fitted with a wave suppression pipe to provide wave suppression when requested.
4. Bronze prevents rust contamination of potable water.
5. The polyethylene float never pollutes the drinking water.
6 . The smooth operation of the pressurebalanced mechanism minimizes vibration noise known as water hammer.

OFlow Characteristics:

Pressure Balanced Float Valve : Model FW(W)

ODimensions:

Nom.size		A	B	C	D	E	L_{1}	L_{2}	J	H	Allowance of J	G	Allowance of G		Float d	Connection Standard
mm	inch															
15	1/2	25	30	27.5	15	27	(348)	(316)	110	200	± 20	(140)	± 20	180	100	JIS B 2061
20	3/4	40	35	33	20	37.5	(422)	(386)	120	239	± 20	(150)	± 20	210	120	
25	1	50	35	36.5	25	53	(470)	(405)	100	224	± 20	(170)	± 20	235	120	
32	1-1/4	50	22	60	25	54.5	(450)	(424)	100	220	± 25	(145)	± 25	235	120	$\begin{gathered} \text { JIS B } 0203 \\ \& \\ \text { BS21 } \end{gathered}$
40	1-1/2	55	23	62	27	60	(495)	(472)	120	257	± 25	(160)	± 25	280	120	
50	2	68	26	72	28	69	(550)	(526)	130	282	± 25	(170)	± 25	280	150	
65	2-1/2	90	30	80.5	46	74	(743)	(700)	150	344	± 30	(220)	± 30	510	150	JIS B 0202 \& BS21 JIS B 2239
80	3	100	30	87	53	85	(890)	(820)	160	374	± 30	(250)	± 30	615	180	
100	4	130	30	105	70	102	(995)	(960)	220	400	± 30	(310)	± 30	725	180	
125	5	168	34	132.5	92	144	(1300)	(1280)	200	490	± 30	(280)	± 30	800	180/180	
150	6	168	34	132.5	92	144	(1300)	(1280)	200	490	± 30	(280)	± 30	800	180/180	

-Materials:

Description	Material
Body	Bronze
Lever Arm	Stainless Steel
Floats	Copper / Polyethylene
Valve Spindle	Brass
Adjustable Connector	Brass
Disc	EPDM / NBR

※FLUORINE-COATING is applied on the inner body.

FWSP meets BS1212 standard.
-Operating Conditions:

MODEL		FWSP										
Nominal Size	mm	15	20	25	32	40	50	65	80	100	150	200
	inch	1/2	3/4	1	1-1/4	1-1/2	2	2-1/2	3	4	6	8
Applicable Fluid		Water										
Working Temperature		0 to $60^{\circ} \mathrm{C}$										
Working Pressure (inlet)		above 0 to 1.6 MPa										
Shell Test Pressure		2.4 MPa										

-Basic Application:

OFlow Characteristics:
Float valves use the weight and buoyancy of their float to keep water levels constant inside water reservoir tanks.

-Features:

1. The unique design of smaller double floats helps to increase water storage capacity and reduce water tank height requirements.
2. Higher working pressure provides a tightness of seat that prevents leakage, overflow, and high maintenance costs.
3. The double float design provides a double-safety feature. Even if one of the floats leak, the other will still function.
4. KKK Float Valves come with an adjustable lever that can be adjusted as required.
5. KKK Float Valves come with a built-in stainless steel strainer to protect the valve seat and to prevent it from clogging, jamming or overflowing.
6. KKK Float Valves' unique design can be
 fitted with a wave suppression pipe to provide wave suppression when requested.
7. Bronze prevents rust contamination of potable water.
8. The Polyethylene float never pollutes the drinking water.

Pressure Balanced Float Valve : Model FWSP

-Dimensions:
unit:mm

Nom.size		A	B	C	D	E	L1	L2	J	H	Allowance of L_{1} to H	G	Allowance of G		Upper float	Lower float	Connection Standard
mm	inch																
15	1/2	25	30	27.5	15	27	(395)	(150)	80	95	± 20	(300)	± 30	150	120	-	JIS B 2061
20	3/4	40	35	33	20	37.5	(485)	(130)	90	110	± 20	(365)	± 30	180	150	-	
25	1	50	35	36.5	25	53	(475)	(110)	100	125	± 20	(390)	± 30	200	150	-	
32	1-1/4	50	22	60	25	54.5	(555)	(20)	140	165	± 25	(400)	± 35	255	150	120	$\begin{gathered} \text { JIS B } 0203 \\ \& \\ \text { BS21 } \end{gathered}$
40	1-1/2	55	23	62	27	60	(585)	(15)	150	177	± 25	(445)	± 35	300	150	120	
50	2	68	26	72	28	69	(625)	(65)	165	193	± 25	(485)	± 35	350	150	120	
65	2-1/2	90	28	80.5	46	74	(830)	(140)	180	226	± 30	(600)	± 45	432	150	120	$\begin{gathered} \text { JIS B } 0202 \\ \& \\ \text { BS21 } \end{gathered}$
80	3	100	28	87	53	85	(840)	(180)	230	283	± 30	(690)	± 45	482	150	150	
100	4	130	30	87	53	119	(930)	(120)	280	333	± 30	(730)	± 60	534	150	150	
150	6	130	32	105	70	140	(1065)	(100)	430	500	± 30	(890)	± 60	750	180	150	
(200)	8	260	40	132.5	92	144	(1300)	(300)	430	522	± 40	(1260)	± 80	1050	180	180	

Rough estimate

-Materials:

Description	Material
Body	Bronze
Strainer	Stainless Steel
Lever Arm	Stainless Steel
Floats	Polyethylene
Valve Spindle	Bronze
Adjustable Connector	Brass
Disc	EPDM/NBR

Pressure Balanced Float Valve : Model FWFP

FW100 meets BS1212 standard.
-Operating Conditions:

MODEL		FWFP										
Nominal Size	mm	15	20	25	32	40	50	65	80	100	150	200
	inch	1/2	3/4	1	1-1/4	1-1/2	2	2-1/2	3	4	6	8
Applicable Fluid		Water										
Working Temperature		0 to $60^{\circ} \mathrm{C}$										
Working Pressure (inlet)		above 0 to 1.6 MPa										
Shell Test Pressure		2.4 MPa										

-Basic Application:

Float valves use the weight and buoyancy of their float to keep water levels constant inside water reservoir tanks.

-Features:

1. The unique design of smaller double floats helps to increase water storage capacity and reduce water tank height requirements.
2. Higher working pressure provides a tightness of seat that prevents leakage, overflow, and high maintenance costs.
3. The double float design provides a double-safety feature. Even if one of the floats leak, the other will still function.
4. KKK Float Valves come with an adjustable lever that can be adjusted as required.
5. KKK Float Valves come with a built-in stainless steel strainer to protect the valve seat and to prevent it from clogging, jamming or overflowing.
6. KKK Float Valves' unique design can be

Flow Characteristics:
 fitted with a wave suppression pipe to provide wave suppression when requested.
7. Bronze prevents rust contamination of potable water.
8. The Polyethylene float never pollutes the drinking water.

Pressure Balanced Float Valve : Model FWFP

-Dimensions:
unit:mm

Nom.size		A	B	C	D	E	L1	L2	J	H	Allowance of L_{1} to H	G	Allowance of G	Length of lever arm	Upper float	Lower float	Connection Standard
mm	inch																
15	1/2	25	16	27.5	15	27	(381)	(136)	80	95	± 20	(300)	± 30	150	120	-	JIS B 2061
20	3/4	40	18	33	20	37.5	(468)	(113)	90	110	± 20	(365)	± 30	180	150	-	
25	1	50	18	36.5	25	53	(458)	(93)	100	125	± 20	(390)	± 30	200	150	-	
32	1-1/4	50	20	60	25	54.5	(555)	(20)	140	165	± 25	(400)	± 35	255	150	120	$\begin{gathered} \text { JIS B } 0203 \\ \text { \& } \\ \text { BS21 } \end{gathered}$
40	1-1/2	55	20	62	27	60	(585)	(15)	150	177	± 25	(445)	± 35	300	150	120	
50	2	68	26	72	28	69	(628)	(68)	165	193	± 25	(485)	± 35	350	150	120	
65	2-1/2	90	28	80.5	46	74	(833)	(143)	180	226	± 30	(600)	± 45	432	150	120	$\begin{gathered} \text { ISO7005-3 } \\ \text { (BS 4504) } \\ \text { PN16 } \end{gathered}$
80	3	100	28	87	53	85	(843)	(183)	230	283	± 30	(690)	± 45	482	150	150	
100	4	130	30	87	53	119	(930)	(120)	280	333	± 30	(730)	± 60	534	150	150	
150	6	130	32	105	70	140	(1080)	(100)	430	500	± 30	(890)	± 60	750	180	150	
(200)	8	260	40	132.5	92	144	(1300)	(300)	430	522	± 40	(1260)	± 80	1050	180	180	

-Materials:

Description	Material
Body	Bronze
Strainer	Stainless Steel
Lever Arm	Stainless Steel
Floats	Polyethylene
Valve Spindle	Bronze
Adjustable Connector	Brass
Flange	Stainless Steel
Disc	EPDM/NBR

※Copper float is available.

Float Valve for rain, underground, sea, river water : Model FWRP

-Operating Conditions:

MODEL		FWRP (Standard and High Durability type)							
Nominal Size	mm	40	50	65	80	100	125	150	200
	inch	1-1/2	2	2-1/2	3	4	5	6	8
Applicable Fluid		Water							
Working Temperature		0 to $60^{\circ} \mathrm{C}$							
Working Pressure (inlet)		above 0 to 1.6 MPa							
Shell Test Pressure		2.4 MPa							

-Basic Application:

The flow path of this float valve is specially designed to solve the trouble caused by the kind of fluid. It is recommended to use for rain, underground, sea and river ${ }^{* 1}$ water.
${ }^{* 1}$ Depending on the condition, primary filtration will be required.

-Features:

1. By the design of the clogging prevention and the discharge flow control, standard and high durability type can be used in various of water.
2. Higher working pressure can be used for wide range of applications.
3. The small air-gap design provides more storage volume for rain water reservoir and etc. where the ceiling height is limited place.
4. Our float valves are equipped with an adjustable air-gap adaptor that can be set as required.
5. Standard type is applicable for rain, underground water.
6. High durability type is applicable for sea, river water by optional fluorine coating.
7. Bronze material has been chosen by its long durability in water.
-Flow Characteristics:

BRONZE VALVES

Float Valve for rain, underground, sea, river water : Model FWRP

-Dimensions: Standard type

Nom.size		A	B	C	D	E	L1	L2	H	Allowance of L1 to H	G	Allowance of G	Length of lever arm	Upper float	Lower float	Connection Standard
mm	inch															
40	1-1/2	55	20	62	27	60	(585)	(15)	177	± 25	(445)	± 35	300	150	120	$\begin{gathered} \text { JIS B } 0203 \\ \text { B } 21 \end{gathered}$
50	2	68	26	72	28	69	(628)	(68)	193	± 25	(485)	± 35	350	150	150	
65	2-1/2	90	28	80.5	46	74	(830)	(140)	226	± 30	(600)	± 45	432	150	120	JIS 10K JIS 16K \& PN16
80	3	100	28	87	53	85	(840)	(180)	283	± 30	(690)	± 45	482	150	150	
100	4	130	30	87	53	119	(930)	(120)	333	± 30	(730)	± 60	534	150	150	
125	5	130	32	105	70	140	(1065)	(100)	500	± 30	(890)	± 60	750	180	150	
150	6	130	32	105	70	140	(1065)	(100)	500	± 30	(890)	± 60	750	180	150	

※Originally, FLUORINE-COATING is applied to the valve seat \& outlet port.
)Rough estimate
-Dimensions: High Durability type

Nom.size		A	B	C	D	E	L1	L2	H	Allowance of L_{1} to H	G	Allowance of G	Length of lever arm	Upper Lower float float	Connection Standard
mm	inch														
100	4	130	18	100	108	87	(980)	(320)	245	± 30	(700)	± 60	500	196×288	$\begin{gathered} \text { JIS 16K } \\ \& \\ \text { PN16 } \end{gathered}$
150	6	155	22	135	150	100	(1200)	(420)	300	± 30	(840)	± 60	600	260×339	
200	8	202	22	204	120	181	(1440)	(480)	351	± 30	(900)	± 60	600	407×309	
※Originally, FLUORINE-COATING is applied to the valve seat \& outlet port.)Rough estimat

OMaterials:

Description	Material	Floats	Polyethylene
Body	Bronze	Valve Spindle	Bronze/Brass
Flange	Sus304	Adjustable Connector	Brass
Lever Arm	Stainless Steel	Disc	EPDM/NBR

FLOAT VALVES: FWSP/FP INSTALLATION DIAGRAM
-Dimensions:
Dimensions:

Nom.size		A	B	C	D	E	L_{1}	L_{2}	J	H
mm	inch									
50	2	68	26	72	28	69	(628)	(68)	165	193
65	$2-1 / 2$	90	28	80.5	46	74	(833)	(143)	180	226
80	3	100	28	87	53	85	(843)	(183)	230	283
100	4	130	30	87	53	119	(930)	(120)	280	280
150	6	130	32	105	70	140	(1080)	(112)	430	500

Nom.size		Allowance of Li to H	G	Allowance of G	Length of lever arm	Upper float	Lower float	Connection Standard
mm	inch							
50	2	± 25	(485)	± 35	350	150	120	$\begin{gathered} \text { ISO7005-3 } \\ \text { (BS 4504) } \\ \text { PN16 } \end{gathered}$
65	2-1/2	± 30	(600)	± 45	432	150	120	
80	3	± 30	(690)	± 45	482	150	150	
100	4	± 30	(730)	± 60	534	150	150	
150	6	± 30	(890)	± 60	750	180	150	

Typical Application: For all tanks without main control system. Notice: Perforated strainner is packaged in the carton box.

FLOAT VALVES: FW INSTALLATION DIAGRAM

ODimensions:

Nom.size		A	B	C	D	E	L_{1}	L_{2}	J	H	
mm	inch										
15	1/2	25	30	27.5	15	27	(370)	(353)	50	98	
20	3/4	40	35	33	20	37.5	(420)	(400)	50	103	
25	1	50	35	36.5	25	53	(490)	(466)	50	110	
32	1-1/4	50	22	60	25	54.5	(477)	(424)	100	180	
40	1-1/2	55	23	62	27	60	(541)	(471)	100	186	
50	2	68	26	72	28	69	(599)	(526)	100	188	
65	2-1/2	90	28	80.5	46	74	(758)	(724)	100	195	
80	3	100	28	87	53	85	(900)	(875)	120	243	
100	4	130	30	105	70	102	(994)	(972)	140	266	
125	5	168	32	132.5	92	144	(1300)) (1280)	350	490	
150	6	168	32	132.5	92	144	(1300)) (1280)	350	490	
Nom.size		Allowance of J		G	Allowance of G	Length of Lever arm		Float d	Connection Standard		
mm	inch										
15	1/2	± 20		(100)	± 20	150		100	JIS B 2061		
20	3/4	± 20		(100)	± 20	150		120			
25	1	± 20		(130)	± 20	200		120			
32	1-1/4	± 25		(200)	± 25	235		120	JIS B 0203		
40	1-1/2	± 25		(220)	± 25	280		120			
50	2	± 25		(240)	± 25	280		150	BS21		
65	2-1/2	± 30		(190)	± 30	450		150	$\begin{gathered} \text { JIS B } 0202 \\ \text { \& } \end{gathered}$		
80	3	± 30		(190)	± 30	550		180			
100	4	± 30		(200)	± 30	600		180	BS21		
125	5	± 30		(450)	± 30	800		80/180			
150	6	± 30		(450)	± 30	800		80/180	JIS	2239	

Float Valve for combination method of drink water: Model FWHR

-Operating Conditions:

MODEL		FWHR					
Nominal Size	mm	15	20	25	32	40	50
	inch	$1 / 2$	$3 / 4$	1	$1-1 / 4$	$1-1 / 2$	2
Applicable Fluid		Water					
Working Temperature	0 to $60^{\circ} \mathrm{C}$						
Working Pressure (inlet)	0 to 0.75 MPa						
Shell Test Pressure	1.75 MPa						

-Basic Application:

These float valves are specially designed for the drinking water as a part of the combination method of rain water and drinking water system.

-Features:

1. FWHR designed for rain water reservoir tank combination method.
2. Model FWHR come with a built-in stainless steel strainer to protect the valve seat and preventing it from clogging, jamming or overflowing.
3. Bronze prevents rust contamination of drinking water.
4. The polyethylene float never pollutes the drinking water.

-Flow Characteristics:

Float Valve for combination method of drink water : Model FWHR

- Dimensions:

OMaterials:

Description	Material
Body	Bronze
Valve Spindle	Brass
Strainer	Stainless Steel
Disk	NBR
Adjustable bolt	Stainless Steel
Lever Arm	Brass
Float	Polyethylene

Float Valve : Model SL, SH

-Operating Conditions:

MODEL		SL			SH		
Nominal Size	mm	10	15	20	15	20	25
	inch	$3 / 8$	$1 / 2$	$3 / 4$	$1 / 2$	$3 / 4$	1
Applicable Fluid	Water						
Working Temperature	0 to $60^{\circ} \mathrm{C}$						
Working Pressure (inlet)	0 to 0.75 MPa (SL10~20mm, SH25mm)	0 to 1.0MPa (SH15~20mm)					
Shell Test Pressure	1.75 MPa						

- Basic Application:

These float valves use the weight and buoyancy of their float to keep water levels constant inside water reservoir tanks.

- Flow Characteristics:

- Features:

1. SL10~20mm are single fulcrum type.
2. SH15~25mm are double fulcrum type.
3. Bronze prevents rust contamination of potable water.
4. The polyethylene float never pollutes the drinking water.

ODimensions:

OMaterials:

Description	Material
Body	Bronze
Lever Arm	Brass
Float	Polyethylene
Disc	NBR

※Copper, Stainless Steel float are available.

-Operating Conditions:

MODEL		SY							
Nominal Size	mm	15	20	25	40	50	65	80	100
	inch	$1 / 2$	$3 / 4$	1	$1-1 / 2$	2	$2-1 / 2$	3	4
Applicable Fluid		Water							
Working Temperature $100^{\circ} \mathrm{C}$									
Working Pressure (inlet)	above 0 to 1.0 MPa								
Shell Test Pressure	1.75 MPa								

-Basic Application:

These float valves use the weight and buoyancy of their float to keep water levels constant inside water reservoir tanks. SY float valves cannot only be used with tap water, but can also be used with special fluids, such as pure water, seawater etc.

-Features:

1. The S.S316 stainless steel body and parts prevent stains and rust.
2. Lost wax casting provides the benefits of thin walls and lightness.
3. SY $15 \sim 25$ are double fulcrum type valves.
4. SY40-100 are pressure-balanced, double-linked types with built-in strainers. They don't fluctuate with water pressure.
5. SY can minimize water waves with a wide skirt.
※ S.S.316=316S31(BS),S31600(ASTM)

-Flow Characteristics:

Stainless Steel Float Valve : Model SY

ODimensions:

Nom.size		A	B	C	D	E	L	H	F	Allowance of E	G	Length of Lever arm	Float	Connection Standard
mm	inch													
15	1/2	30	35	33	41	70	(363)	111	PJ1/2	± 20	(277)	150	100	$\begin{aligned} & \text { JIS B } 2061 \\ & \text { ※ } \end{aligned}$
20	3/4	40	35	40	51	85	(462)	136	PJ3/4	± 20	(361)	210	120	
25	1	50	38	50	55	100	(586)	155	PJ1	± 20	(474)	280	150	
40	1-1/2	68	23	56	41	100	(566)	141	R1-1/2	± 25	(389)	280	120	$\begin{gathered} \hline \text { JIS B } 0203 \\ \text { \& } \\ \text { BS21 } \\ \hline \end{gathered}$
50	2	68	26	56	47	100	(598)	147	R2	± 25	(417)	280	150	
65	2-1/2	120	24	88	76	130	(890)	206	$\begin{gathered} 2-1 / 2 \\ \mathrm{JIS} 10 \mathrm{~K} \end{gathered}$	± 30	(593)	432	180	JIS B 2240
80	3	120	24	88	76	140	(930)	216	$\begin{gathered} 3 \\ \text { JIS10K F } \end{gathered}$	± 30	(654)	482	180	
100	4	140	24	104.5	87	150	(1007)	237	$\begin{gathered} 4 \\ \text { JIS } 10 \mathrm{~K} F \end{gathered}$	± 30	(654)	534	180	

※ JIS B 2061 thread is able to use for BS21 thread.

OMaterials: 15 to 25 mm

Description	Material
Body	S.S.316
Guide	S.S.316
Disc / Option	FKM / NBR,EPDM,PTFE
Lever A	S.S.316
Rink	S.S.316
Lever B	S.S.316
Lever Arm	S.S.316
Float	S.S.316L/S.S.316(25mm)

※S.S.316=316S31(BS),S31600(ASTM)
S.S.316L=316S11(BS),S31603(ASTM)
※ Casting Material: 316C16(BS) equivalent CF8M(ASTM)
-Materials: $\mathbf{4 0}$ to $\mathbf{1 0 0} \mathrm{mm}$

Description	Material
Body	S.S.316
Valve Spindle	S.S.316
Strainer	S.S.316
Lever A	S.S.316
Joint	S.S.316
Cylinder	S.S.316
Disc / Option	FKM / NBR,EPDM,PTFE
Guide	S.S.316
Lever B	S.S.316
Lever Arm	S.S.316
Float	

※S.S.316=316S31(BS),S31600(ASTM)
S.S.316L=316S11(BS),S31603(ASTM) ※ Casting Material: 316C16(BS) equivalent

CF8M(ASTM)

Stainless Steel Float Valve : Model SYS

-Operating Conditions:

MODEL		SYS			
Nominal Size	mm	10	15	20	25
	inch	$3 / 8$	$1 / 2$	$3 / 4$	1
Applicable Fluid		Water			
Working Temperature	0 to $100^{\circ} \mathrm{C}$				
Working Pressure (inlet)	above 0 to 0.75 MPa				
1.75 MPa					
Shell Test Pressure					

-Basic Application:

These float valves use the weight and buoyancy of their float to keep water levels constant inside water reservoir tanks. SY float valves cannot only be used with tap water, but can also be used with special fluids, such as pure water, seawater etc.

-Features:

1. The S.S. 316 stainless steel body and parts prevent stains and rust.
2. Lost wax casting provides the benefits of thin walls and lightness.
3. SYS 10~25 are single fulcrum type valves.
※ S.S.316=316S31(BS),S31600(ASTM)
-Flow Characteristics:

THREADED END JIS(BSP) 10 mm

ODimensions:

Nom.size		A	B	C	D	E	L	H	F	Allowance of E	G	Length of Lever arm	Float	Connection Standard
mm	inch													
10	3/8	20	19	25	13	(48)	(218)	61	G3/8	(± 10)	(148)	90	\$50×L90	JIS B 0202 \& BS21
15	1/2	30	35	33	38	70	(367)	108	PJ1/2	± 20	(228)	180	100	
20	3/4	40	35	40	51	85	(418)	136	PJ3/4	± 20	(293)	200	120	J B 2061
25	1	50	38	50	51	90	(539)	141	PJ1	± 20	(360)	280	150	

※ JIS B 2061 is able to use BS21.

OMaterials: 15 to 25mm

Description	Material
Body	S.S.316
Lever	S.S.316
Disc / Option	FKM / NBR,EPDM,PTFE
Guide	S.S.316
Lever Arm	S.S.316
Float	S.S.316

※ S.S.316=316S31(BS),S31600(ASTM)
※ Casting Material: 316C16(BS) equivalent
: CF8M(ASTM)

Pilot valve of level differential operating type: Model FWDL

-Operating Conditions:

MODEL		FWDL		Applicable Fulid	Water
Nominal Size	mm	15	20	Working Temperature	above 0 to $60^{\circ} \mathrm{C}$
	inch	$1 / 2$	$3 / 4$	Working Pressure (inlet)	above 0 to 1.6 MPa
Applicable Fluid		Water		Shell Test Pressure	2.4 MPa
Level of Adjustable					

- Basic Application:

Model FWDL is used as a pilot valve with Model D series to reduce the energy costs of pumps by setting the water level suitable for water consumption.

-Features:

1. The specially designed level differential pilot valve helps to increase water storage capacity and to circulate the water inside a tank.
2. The water level can be easily adjusted as required by shortening or lengthening the turnbuckle of valve arms.
3. The valve comes with a built-in stainless steel perforated strainer to protect the valve seat and prevent it from clogging, jamming, or overflowing.
4. The angle patterned pilot valve triggers self-cleaning of the system on every run.
5. Bronze protects potable water from red rust and rust contamination.
6. The polyethylene float never pollutes the drinking water.

Pilot valve of level differential operating type: Model FWDL

-Dimensions:

unit:mm

Nom.size		B	(C)	D	E	Minimum Adjusted Water Level					MAXimum Adjusted Water Level(EX-FACTORY)					d	Connection Standard
mm	inch					H1	(H2)	(G1)	(G2)	(L)	H1	(H2)	(G1)	(G2)	(L)		
15	33	17	33	47.5	R1/2	120 ± 30	100	217	207	588	280 ± 30	60	377	121	492	120	$\begin{gathered} \text { JIS B } 0203 \\ \& \\ \text { BS21 } \end{gathered}$
20	40	18	33	47.5	R3/4	120 ± 30	100	217	207	596	280 ± 30	60	377	121	500	120	

-Materials:

Description	Material	Description	Material	
Body	Bronze	Guide	Bronze	
Valve Spindle	Brass	Lever B	Brass	
Strainer	Stainless Steel	Lever Arm	Stainless Steel	
Lever A	Bronze	Float	Polyethylene	
Bolt	Stainless Steel	Joint A	Brass	
Cylinder	Brass	Joint B	Brass	
Disc	EPDM			

BRONZE VALVES

Pressure Balanced Float Valves For Pilot: Operating Principles

FWDL Operating Principles:

Close Position: See Fig. 1

The FWDL is kept in the close position by the balancing mechanism when acted upon by the buoyancy of the float (used for valve closing) and the inlet pressure.

Water Level Drops:

When the water level starts dropping, the float begins to rest less and less on the water surface, until 100 mm at which point it is practically hanging in the air. This is due to its pressure balancing mechanism.

Open Position : See Fig. 2

When the water level drops more than 100 mm , the weight of the float will exceed FWDL's pressure balance, and the valve will open to start water flow.

Water Level Rises:

The main valve will open when FWDL starts the flow.
The water level in the tank will start to rise.

Back to Close Position: See Fig. 1

When the water level rises higher, the float (now used for valve closing) will start floating on the water. Then the FWD valve will close at the preset high water level.

FIG1. case of non flowing
$\mathrm{F}_{1}=\mathrm{P}_{1} \times \mathrm{S}_{1}=\mathrm{F}_{2}=\mathrm{P}_{1} \times \mathrm{S}_{2}$
\checkmark
Pilot Valve is closed by F_{3}.
(Buoyancy of float)

FIG2. case of flowing
$F_{1}=P_{1} \times S_{1}=F_{2}=P_{1} \times S_{2}$
\checkmark
Pilot Valve is opened by F_{3}. (Float weight)

Pressure Balanced Float Valves For Pilot: Operating Principles

MODEL: DS PILOT VALVE(FWDL) INSTALLATION DIAGRAM

A:150mm (minimum) B:170mm C:100mm

Advantages

1. FWDL pilot valve is designed to close tight when the water level reaches a preset maximum height (for first time operation). Afterwards, it opens whenever the water level drops approx. 100 mm . Thus, FWDL provides accurate water level control in tanks.
2. FWDL provides a large water storage capacity.
3. FWDL can be installed at any height.
4. FWDL has no guide. This prevents water contamination from worms or dust from outside the tank.
5. FWDL can be easily removed for maintenance purposes.
6. Below is the standard installation in Japan.

MODEL:DS INSTALLATION EXAMPLE

(FWDL)

MODEL:DS INSTALLATION DIAGRAM (FWDL)

No. 1

No. 3

No. 2

No. 4

MODEL:DL INSTALLATION DIAGRAM (FWDL)

Constant Head Valve

No. 1

Main Valve and Pilot Valve Combination System :

By selecting FW series, dust and insects and rainwater will

FLOAT VALVES PILOT: FWDL $15 \mathrm{~mm} / 1 / 2 "$ SYSTEM DIAGRAM not be subject to intrusion from the hole for the pilot vaive.

MODEL: DS

MODEL: DS(flange)

MODEL: DX

MODEL: DRWP

APPLICATION for Portable and New Water system.
$\mathrm{A}: 150 \mathrm{~mm}$ (minimum) $\mathrm{B}: 170 \mathrm{~mm} \mathrm{C}: 100 \mathrm{~mm}$ (level differential)
Typical Application: For big tanks in basements in order to save on electricity for pumps and to minimize flow-noise during the night. (Tank capacity: above100 tons)
Recommendations: For pilot pipe, using sus $304 / 316$ Sch 40 pipe with size of $15 \mathrm{~mm} / 1 / 2^{\prime \prime} \mathrm{OD}=21.7 \mathrm{~mm}$ pipes. (hole opening for pilot pipe penetrating, is 25 mm silicon sealing + pipe covering made of thin sus plate with headless allentkey screw)
-Operating Conditions:

MODEL		FWD	
Nominal Size	mm	15	20
	inch	$1 / 2$	$3 / 4$
Applicable Fluid		Water	
Working Temperature	0.05 to $60^{\circ} \mathrm{C}$		
Working Pressure (inlet)	above 0 to 1.6 MPa		
Shell Test Pressure		2.4 MPa	

-Basic Application:

The FWD unit is used along with the DH unit in order to reduce the energy costs of pumps as well as conserve and refresh water by monitoring water levels that can greatly differ.

-Features:

1. The specially designed level differential pilot valve helps to increase water storage capacity and to circulate the water inside a tank.
2. The water level can be easily adjusted as required by shortening or lengthening the riser (vertical) pipe of the pilot valves.
3. The valve comes with a built-in stainless steel perforated strainer to protect the valve seat and prevent it from clogging, jamming or overflowing.
4. The angle-patterned pilot valve triggers self-cleaning of the seat on every run.
5. Bronze protects potable water from red rust contamination.

6 . The polyethylene float never pollutes the drinking water.
7. The valve is designed to use chains for adjusting the level difference, a wide level difference minimizes the number of times the pumps turn on or off, therefore it is able to save on electricity costs for the pumps.

Pressure Balanced Float Valves For Pilot: Model FWD

-Dimensions:

THREADED END JIS(BSP) $\mathbf{1 5} \mathbf{m m}$ to $\mathbf{2 0 m m}$

Nom.size		A	B	C	D	E	L	H	F	Allowance of E	J	G	Length of Lever arm	Float d1	Float d2	Connection Standard
mm	inch															
15	1/2	33	17	33	47.5	117	(400)	168	R1/2	± 30	(200~500)	(285)	250	100	120	JIS B 0203
20	3/4	40	18	33	47.5	117	(408)	168	R3/4	± 30	(200~500)	(285)	250	100	120	BS21

-Materials:

Description	Material	Description	Material	
Body	Bronze	Disc	EPDM	
Valve Spindle	Bronze	Guide	Bronze	
Strainer	Stainless Steel	Lever B	Brass	
Lever A	Bronze	Lever Arm	Stainless Steel	
Link	Stainless Steel	Float	Polyethylene	
Cylinder	Bronze			

Pressure Balanced Float Valves For Pilot: Operating Principles

FWD Operating Principles:

Close Position: See Fig. 1

The FWD is kept in the close position by the balancing mechanism when acted upon by the buoyancy of float A (used for valve closing) and the inlet pressure.

Water Level Drops: See Fig. 2

When the water level drops, float A will remain hanging in the air because of FWD's pressure-balancing mechanism. Meanwhile, float B (used for valve opening), which is connected to float A by a chain, keeps floating on the water.

Open Position: See Fig. 3

When the chain is pulled to tension, the weight of float B (used for valve opening) will exceed FWD's pressure balance and the FWD valve will open to start water flow.

Water Level Rises: See Fig. 2

The main valve will open when FWD starts to flow. The water level in the tank will start to rise.

FWD Back to Close Position: See Fig. 1

Float B (used for valve opening) keeps floating on the water. When the water level rises higher, Float A (used for valve closing) will start floating on the water. Then the FWD valve will close.

FIG3.open position

FIG2. water level drops/rises

Main Valve and Pilot Valve Combination System :
Bu selecting FW series, dust and insects and rainwater will
FLOAT VALVES PILOT: FWD 15mm/ 1/2" SYSTEM DIAGRAM
not be subject to intrusion from the hole for the pilot value.

MODEL: DS

MODEL: DS(flange)

APPLICATION for Portable and New Water system.
A: 150 mm (minimum) B: 170 mm C: $500,1000,1500,2000 \mathrm{~mm}$
Typical Application: For tall tanks on rooftops or for big reservoirs to circulate dead water, save on pump electricity, lengthen pump life, and minimize flow-noise during the night. (Top tank size: 1 to $2.5 \mathrm{~m}^{3}$ / Big reservoirs: above 100 tons)
Recommendations: For pilot pipe, using sus $304 / 316$ Sch 40 pipe with size of $15 \mathrm{~mm} / 1 / 2^{\prime \prime}$ OD=21.7mm pipes. (hole opening for pilot pipe penetrating is Min. 35 mm , rubber bush + silicon sealing + pipe covering socket with headless allentkey screw)

Pilot Operated Float Valves for pilot : Installation Diagram

MODEL : DS INSTALLATION DIAGRAM (FWD)

No. 1

No. 3

No. 2

No. 4

Pilot Operated : Operating Principles

MODEL : DS PILOT VALVE(FWD) INSTALLATION DIAGRAM

A: 150 mm (minimum) $\mathrm{B}: 170 \mathrm{~mm} \mathrm{C}: 500,1000,1500,2000 \mathrm{~mm}$

Advantages

1. The FWD pilot valve is designed to close tight when the water level reaches a preset maximum height (for the first time operation). Afterwards, it opens whenever the water level drops approx. $500,1000,1500$ or 2000 mm . Thus FWD provides accurate water level control in the tank.
2. FWD provides large water storage capacity.
3. The FWD pilot valve is designed with a float attached at the end of a chain. Large water differential between the valve opening and closing can be achieved according to the chain length.
4. The FWD can be installed at any height.
5. The FWD has no guide. This prevents water contamination from worms or dust from outside the tank.
6. FWD can be removed easily for maintenance purposes.
7. FWD can reduce a lot of pump noise and pump electricity consumption, thus lengthening the pump's life.

MODEL:DS INSTALLATION EXAMPLE (FWD)

Caution

Please make sure to install FWD as such that during FWD operation, the float to open the valve and chain (of $500,1000,2000 \mathrm{~mm}$) won' t wind into any nearby pipes, etc.

