Pilot Operated Float Valve : Model DS/DRWP

-Operating Conditions:

MODEL	DS / DRWP
Applicable Fluid	Water
Working Temperature	0 to $80^{\circ} \mathrm{C}$
Working Pressure (inlet)	above 0.03 to 1.6 MPa

-Basic Application:

Pilot operated valves are used in water reservoir tanks to keep the water level constant.

-Features:

1. The small-bore size of the pilot valve is advantageous in securing water reserve with a small air gap.
2. The water level of the storage tank can be easily adjusted by extending or shortening the length of the pipes.
3. The perforated stainless strainer lengthens diaphragm and seat life with its filtering and dynamic flow speed control.
4. Flow rate can be controlled from full open to full close by turning the adjustable spindle (especially useful in drought conditions).
5. Stainless steel seats avoid damage from dust much more effectively than bronze ones.
6. In comparison with side cover units, the top cover features easy maintenance of internal components.
7. Pilot operated valves are recommended when separately installing the pilot and main valves (even over a long distance).
8. Bronze prevents red rust contamination of potable water.
9. Optionally, pipe covering socket with headless allentkey screw and rubber bush are provided, using sus $304 / 316$ Sch40 pipe with size of $15 \mathrm{~mm} / 1 / 2^{\prime \prime} \mathrm{OD}=21.7 \mathrm{~mm}$ pipes. (hole opening for pilot pipe penetrating is Min. 35 mm and finishing with silicon sealing)

Pilot Operated Float Valve : Model DS/DRWP

-Dimensions: Flanged end
unit:mm
Connection Standard:JIS B 2240 \& ISO7005-3

Nom.size		L	H1	H2	H3	Flange
mm	inch					
65	2-1/2	250	267.5	87.5	139	JIS 10K
80	3	280	287.5	92.5	154	
100	4	340	315	105	174	
150	6	460	412	140	231	
200	8	510	437	165	228	
250	10	572	473	200	228	
300	12	642	667.5	222.5	265	
65	2-1/2	254	272.5	92.5	139	PN16
80	3	284	295	100	154	
100	4	348	320	110	174	
150	6	464	414.5	142.5	231	
200	8	518	442	170	228	
250	10	580	475.5	202.5	228	
300	12	650	675	230	265	

-Dimensions: Threaded end
unit:mm

Connection Standard:JIS B 0203 \& BS21						
Nom.size	L	H1	H2	H3	END	
mm	inch					
20	$3 / 4$	90	136	19	90	$3 / 4$ "
25	1	100	142	21	94	$1 "$
32	$1-1 / 4$	110	154	26	99	$1-1 / 4^{\prime \prime}$
40	$1-1 / 2$	120	159	30	98	$1-1 / 2^{\prime \prime}$
50	2	140	173	37	104	$2 \prime$

-Dimensions: Wafer end
unit:mm
Connection Standard:JIS B 2240 \& ISO7005-3(BS4504)

Nom.size		L	H1	H2	H3	ϕ D	END
mm	inch						
65	2-1/2	140	(252)	61	(191)	122	JIS 10K
80	3	180	(281)	66	(215)	132	
100	4	190	(301.5)	78.5	(223)	157	
125	5	225	(339)	94	(245)	188	
150	6	230	(373)	108	(265)	216	
200	8	310	(479)	134	(345)	268	
65	2-1/2	140	(253.5)	62.5	(191)	125	PN16
80	3	180	(285)	70	(215)	142	
100	4	190	(303)	80	(223)	160	
125	5	225	(341)	96	(245)	192	
150	6	230	(373)	108	(265)	216	
200	8	310	(480.5)	135.5	(345)	271	

Pilot Operated Float Valve : Model DS/DRWP

-Materials:

Description	Material	Description	Material	Description	Material
Body	Bronze	Strainer holder	Brass	Vaccum holder	Brass
Cover	Bronze	Resister A	Brass / Plastic	Resister C	Brass
Diaphragm	EPDM	Resister B *	Brass / Plastic	Seat	Stainless Steel
Diaphragm plate	Stainless Steel	Cap	Brass	Spindle	Stainless Steel
Spring	Stainless Steel	Orifice	Brass	Disc	EPDM
Adjustable Spindle	Brass	Guide	Bronze	Spindle Guide	Stainless Steel
Handle	Brass/Bronze	Strainer	Stainless Steel	Valve Lid	Bronze

※ Size 20, 25mm :Resister E, Size 32, 40, 50mm :Resister B
-Flow Characteristics:

-Optional parts: rubber bush \& pipe cover

Pilot Valve FWD/FWDL Installations for: Model DX/DS/DRWP

Recommendable common installations: Using sus 304/316 Sch40 pipe with size of 15 mm $1 / 2$ " OD=21.7mm pipes or PPR pipe. (hole opening for pilot pipe penetrating, is Min. 35 mm + rubber bush + silicon sealing + cover plate with headless allentkey screw)

Main and Pilot Valve Combination System : Model DS/DL/DRWP

Pilot Operated Float Valves Flanged End : Model DX

-Operating Conditions:

MODEL		DX		
Nominal Size	mm	80	100	150
	inch	3	4	6
Applicable Fluid	Water			
Working Temperature	0 to $60^{\circ} \mathrm{C}$			
Working Pressure (inlet)	0.03 to 1.6 MPa			
Shell Test Pressure		2.4 MPa		

-Basic Application:

Pilot Operated Float Valves DX are used with water reservoir tanks to keep the water level constant.

OFeatures:

1. Extremely compact design is advantageous in limited space installation.
2. The water level of the storage tank can easily be adjusted by changing the length of the rod.

OFlow Characteristics:

3. Perforated strainer lengthens diaphragm life.
4. Flow rate can be controlled from full open to full close by screwing the adjustable spindle (especially useful during droughts).
5. The stainless steel seat prevents damage from dust much more effectively than a bronze one.
6 . In comparison with a side cover, the top cover features easy maintenance of internal components.
7. Bronze prevents red rust contamination of potable water.

Pilot Operated Float Valves Flanged End : Model DX

-Dimensions:
unit:mm

MODEL Nom.size		DX					Connection Standard
		L	H1	H2	H3	END	
mm	inch						
80	3	140	281	126	132	PN16	$\begin{gathered} \text { ISO 7005-3 } \\ \text { (BS 4504) } \end{gathered}$
100	4	170	308	137	171		
150	6	200	338	167	171		

-Materials:

Description	Material	Description	Material	
Body	Bronze	Strainer Holder	Brass	
Cover	Bronze	Cap	Bronze	
Diaphragm	EPDM	Strainer	Stainless Steel	
Guide	Bronze	Orifice	Bronze	
Spring	Stainless Steel	Resistor A	Plastic	
Seat	Stainless Steel	Resistor B	Plastic	
Adjustable Spindle	Brass			

Float Valve With Sustaining Valve : Model DH/DHWP

-Operating Conditions:

MODEL	DH / DHWP
Applicable Fulid	Water
Working Temperature	0 to $80^{\circ} \mathrm{C}$
Working Pressure (inlet)	0.05 to 1.6 MPa
Set PressureRange	$※ 0.05$ to $0.1 \mathrm{MPa}, 0.1$ to $0.35 \mathrm{MPa}, 0.35$ to 0.55 MPa
Shell Test Pressure	2.4 MPa

※Choice of spring range

-Basic Application:

DH units are used in water reservoir tanks to keep the water level constant.

-Features:

1. The DH unit is a pilot operated valve with sustaining valve function.
2. The perforated strainer lengthens diaphragm life.
3. Flow rate can be controlled from full open to full close by screwing the adjustable spindle (especially useful in drought conditions).
4. The back pressure setting bolt is fully covered by a brass metal cap to prevent unauthorized third parties from changing the setting.
5. Bronze prevents red rust contamination of potable water.

Float Valve With Sustaining Valve : Model DH/DHWP

-Dimensions: Flanged end
Connection Standard:JIS B 2240 \& ISO7005-3(BS4504)

Nom.size		L	H1	H2	FLANGE
mm	inch				
65	2-1/2	250	396	87.5	JIS10K
80	3	280	423	92.5	
100	4	340	447	105	
150	6	404	482	140	
200	8	510	570	165	
250	10	572	670	200	
300	12	642	735	222.5	
65	2-1/2	254	401	92.5	PN16
80	3	284	430.5	100	
100	4	348	452	110	
150	6	408	484.5	142.5	
200	8	518	575	170	
250	10	580	672.5	202.5	
300	12	650	742.5	230	

ODimensions: Threaded end
unit:mm

Connection Standard:JIS B 0203 \& BS21					
Nom.size		L	H1	H2	END
mm	inch				
20	3/4	90	267	19	3/4"
25	1	100	269	21	$1 "$
32	1-1/4	110	291	26	1-1/4"
40	1-1/2	120	295	30	1-1/2"
50	2	140	308	37	2 "

-Dimensions: Wafer end unit:mm
Connection Standard:JIS B 2240 \& ISO7005-3(BS4504)

Nom.size		L	H1	H2	END
mm	inch				
65	2-1/2	140	(386)	61	JIS10K
80	3	180	(430)	66	
100	4	190	(453)	78.5	
125	5	225	(496)	94	
150	6	230	(518)	108	
200	8	310	(599)	134	
65	2-1/2	140	(388)	62.5	PN16
80	3	180	(435)	71	
100	4	190	(455)	80	
125	5	225	(498)	96	
150	6	230	(518)	108	
200	8	310	(601)	135.5	

Float Valve With Sustaining Valve : Model DH/DHWP

-Materials:

Description	Material	Description	Material	Description	Material
Body	Bronze	Strainer holder	Brass	Guide	Bronze
Cover	Bronze	Resister A	Brass/Plastic	Strainer	Stainless Steel
Diaphragm	EPDM	Resister B	Brass/Plastic	Vaccum holder	Brass
Spring	Stainless Steel	Cap	Brass	Resister C	Brass
Adjustable Spindle	Brass	Orifice	Bronze	Seat	Stainless Steel

-Flow Characteristics:

Float Valve With Sustaining Valve : Model DH/DHWP

About pilot operated float valve with sustaining valve:

Many water works utilities are facing the problem of "Peak Cut" and higher investment costs for distribution. The total consumption of water in big cities is increasing year by year.

Water works utilities have to start planning for new pumps or new piping. Replacing equipment in main pump stations, enlarging pipes and changing the pipes to a larger bore is extremely expensive.

But if water works utilities consider using Model DH, they'll find the cost of installing the DH unit is much cheaper than previous methods of investment.

DH can fully support the water works utilities to solve the problem of "Peak-Cut". DH functions exaclty the same way as our body's blood-pressure control. Each DH becomes a nerve in the network of the water supply system.

Remark:

After installation of a DH unit, every pilot operated float valve must be changed to a DH unit, otherwise peak-cut problems will become worse.

Float Valve With Sustaining Valve : Model DH/DHWP

CASE. 1 : NORMAL SITUATION Distribution is even.

If the city-mains' pressure is high enough for distribution, 20 mm pipe-sized tanks and 50 mm pipe-sized tanks can get water smoothly and evenly.
At normal night time hours the distribution situation is as above.

Float Valve With Sustaining Valve : Model DH/DHWP

CASE. 2 : OCCASIONAL SITUATION PEAK-TIME Distribution is uneven.

During peak time, the city-mains' pressure drops significantly.
Water always goes towards the larger bore pipes or ground level at lower places.
This causes uneven distribution.
For example, the 20 mm pipe only gets water after the 50 mm pipe's tank becomes full of water.
This means that occasionally, the 20 mm pipe's tank might be empty!

Float Valve With Sustaining Valve : Model DH/DHWP

SOLUTION : INSTALL Model DH Pilot Operated Float Valve With Sustaining Valve. Water distribution is under control of DH.

During peak time, city-mains' pressure drops significantly, but the DH unit starts to keep inlet pressure at the desired pressure by closing or opening the main valve.
It's like the blood pressure control system in humans.
Every DH unit continuously opens or closes the main valve regardless of the open or close state of the pilot until the inlet pressure becomes steady.

