Primary Pressure Sustaining Valve :

-Operating Conditions:

MODEL		DPS										
Nominal Size	mm	20	25	40	50	65	80	100	150	200	250	300
	inch	3/4	1	1-1/2	2	2-1/2	3	4	6	8	10	12
Applicable Fluid		Water										
Working Temperature		0 to $60^{\circ} \mathrm{C}$										
Working Pressure (inlet)		0.05 to $1.6 \mathrm{MPa} /(0.05 \text { to } 0.5 \mathrm{MPa})^{*}$										
Set PressureRange		※0.05 to $0.1 \mathrm{MPa}\left(^{*}\right.$), 0.1 to 0.35 MPa (*) $^{*}, 0.35$ to 0.55 MPa										
Shell Test Pressure		$2.4 \mathrm{MPa} /(1.0 \mathrm{MPa})^{*}$										

※Choice of spring range. ()* or (${ }^{*}$) shows the body material of plastic.

-Basic Application:

DPS are installed generally before the water meter to recover the essential water distribution efficiency by sustaining primary pressure.

-Features:

1. Model DPS is specially developed to stabilize supply pressure at the water distribution network.
2. Nominal size $20 \sim 40 \mathrm{~mm}$ are pilot valve integrated type for space saving.
3. Every size of Model DPS are designed as full bore.
4. The primary pressure setting is easy to change on site by adjusting thread or bolt.
5. Bronze/ lead free bronze prevents red rust contamination of potable water.

Primary Pressure Sustaining Valve :

Model DPS

ODimensions: Threaded end

Connection Standard:JIS B 0203 \& BS21					
Nom.size	L	H1	H2	END	
mm	inch				
20	$3 / 4$	105.5	82	22	$3 / 4$ "
25	1	114.5	84.5	26	1 "
40	$1-1 / 2$	140	120	38	$1-1 / 2^{\prime \prime}$
50	2	140	308	37	$2 "$

-Dimensions: Flanged end nit:mm
Connection Standard:JIS B 2240 \& ISO7005-3(BS4504)

Nom.size		L	H1	H2	FLANGE
mm	inch				
65	2-1/2	250	396	87.5	JIS10K
80	3	280	423	92.5	
100	4	340	447	105	
150	6	460	540	140	
200	8	642	735	222.5	
250	10	630	670	200	
300	12	750	735	222.5	
65	2-1/2	254	401	92.5	PN16
80	3	284	430.5	100	
100	4	348	452	110	
150	6	464	542.5	142.5	
200	8	650	742.5	230	
250	10	630	672.5	202.5	
300	12	750	742.5	230	

Model DPS

-Materials of bronze valve:

Description	Material	Description	Material	Description	Material
Body	Bronze	Strainer holder	Brass	Guide	Bronze
Cover	Bronze	Resister A	Brass/Plastic	Strainer	Stainless Steel
Diaphragm	EPDM	Resister B	Brass/Plastic	Vaccum holder	Brass
Spring	Stainless Steel	Cap	Brass	Resister C	Brass
Adjustable Spindle	Brass	Orifice	Bronze	Seat	Stainless Steel

-Flow Characteristics:

Primary Pressure Sustaining Valve :

Model DPS

About primary pressure sustaining valve 1:

Most of waterworks utility in many countries where the economic development / growth are advancing, are facing following problems.

Large-scale companies (=large water consumers) which have been newly joined in the existing same water distribution block, have starting their business activity one after another.
In addition, the water usage of the individual by the improvement of living level is also increasing year by year.

Due to such a phenomenon, 'the residents complaint against the unstable water supply pressure and amount', and 'non-revenue water' has been highlighted as a problem related to the water-distribution.
And the high investment cost is required to solve them.
Many water works utilities are facing the problem of 'N.R.W' and higher investment costs for distribution. The total consumption of water in big cities is increasing year by year.

Therefore, the waterworks utility shall sequentially advance the new pipe laying and the replacement or the installation of the water distribution pump to solve the above problem.
For example, huge budget will be necessary for the replacement of pumps at the main distribution pump-station and pipe diameter expansion of the distribution pipe also requires a lot of time.

However, if waterworks utility considers the introduction of the pressure sustaining valve, they will notice that the investment amount is much cheaper compared with the above-mentioned previous, ordinary methods.

And, pressure-sustaining-valve system enables the stabilized water distribution, like a fully automatic controlled blood pressure control system.
Pressure-sustaining-valve starts to act as similar in the autonomic nervous system of the blood pressure control system in our body after installation.
Those can resolve the water distribution and related problems.

BRONZE VALVES

About primary pressure sustaining valve 2:

In the water distribution network which lost its water distribution balance due to the water consumption indicates the water shortage, or the lost-timing of watersupply, such as the so-called peak problem.
The above-mentioned problem can be solved by installing pressure-sustainingvalve enables to regain the distribution balance, due to restoring the original water-distribution pressure gradient by the time-sharing of watersupply/distribution.

In addition, the water supply pressure shortage at the water supply end district occured by the extension of the water distribution pipe, which is due to the increase of water supply taps, will be solved by setting a new distribution pressure gradient.

If the lack of water supply pressure at hills district occurred by the overall consumption increase against water supply in the same water distribution block, it will be solved to restore the water supply pressure to the hilly area by changing the distribution pressure gradient at the low zone.

In this way, by just installing pressure-sustaining-valves, the distribution pressure gradient in the water supply network is managed to set and vary at the desirable level.
It enables to achieve the distribution of optimal water distribution pressure.
And optimum re-distribution pressure for the water distribution enables to save energy of the water distribution pump and by choosing a smaller pump diameter and cutting a big budget of updating pumps.
Moreover, previous water leakage becomes a visual water leakage on the ground surface.
Therefore, it can be expected to advance to solve the non-revenue water problems that including the unknown water.

Pump Pressure Relief Valve : Model DPR/ PRWP

-Operating Conditions:

MODEL	DPR / PRWP
Applicable Fluid	Water
Working Temperature	0 to $80^{\circ} \mathrm{C}$
Working Pressure (inlet)	above 0.05 to 1.6 MPa
Set Pressure (outlet) ※ 1	$100 \sim 350 \mathrm{kPa}, 350 \sim 550 \mathrm{kPa}, 550 \sim 750 \mathrm{kPa}, 750 \sim 1200 \mathrm{kPa}$
Shell Test Pressure	2.4 MPa

※1 Choice of spring range

-Basic Application:

Pressure Relief Valves DPR/PRWP are used in pump rooms for sprinkler system to relieve the extra pressure from the fluctuations in pump outlet pressure.

-Features:

1. PRWP has been designed as wafer style for easy installation by reducing its weight by 50% and successfully shortening previous installation time by 50%.
2. Main parts are made of bronze and stainless steel to prevent rust contamination.
3. The open degree of the main valve is manipulated by adjustable spindle to control water flow.
4. Simple disassembly and assembly features easy maintenance.
5. DPR/PRWP can be installed either vertically or horizontally.

Pump Pressure Relief Valve : Model DPR/ PRWP

FLANGED END JIS10K(PN16) 65mm to 300 mm
-Dimensions: Flanged end
unit:mm
Connection Standard:JIS B 2240 \& ISO7005-3(BS4504)

Nom.size		L	H1	H2	FLANGE
mm	inch				
65	2-1/2	250	396	87.5	JIS10K
80	3	284	423	92.5	
100	4	344	447	105	
150	6	460	540	140	
200	8	510	570	165	
250	10	630	670	200	
300	12	750	735	222.5	
65	2-1/2	250	401	92.5	PN16
80	3	284	430.5	100	
100	4	344	452	110	
150	6	460	542.5	142.5	
200	8	510	575	170	
250	10	630	672.5	202.5	
300	12	750	742.5	230	

unit:mm
Connection Standard:JIS B 2240 \& ISO7005-3(BS4504)

Nom.size		L	H1	H2	END
mm	inch				
65	2-1/2	160	(386)	61	JIS10K
80	3	180	(430)	66	
100	4	190	(453)	78.5	
125	5	225	(496)	94	
150	6	230	(518)	108	
200	8	310	(599)	134	
65	2-1/2	250	(388)	62.5	PN16
80	3	284	(434)	70	
100	4	344	(455)	80	
125	5	344	(498)	96	
150	6	460	(518)	108	
200	8	510	(601)	135.5	

-Materials:

Description	Material
Body	Bronze
Cover	Bronze
Diaphragm	EPDM
Spring	Stainless Steel
Adjustable Spindle	Brass
Cap	Brass
Strainer	Stainless Steel
Seat	Stainless Steel

-Flow Characteristics:

Automatic Mixing Valve : Model TM Automatic Selector Valve : Model TS

-Operating Conditions:

MODEL		TM			TS		
Nominal Size	mm	15	20	25	15	20	25
	inch	1/2	3/4	1	1/2	3/4	1
Applicable Fluid		Water (Cold/Hot)					
Temperature Control Range		30 to $50^{\circ} \mathrm{C}$			\longrightarrow		
Control Temperature		\square			$68 \pm 2^{\circ} \mathrm{C}$		
Water Diversion Performance		\square			0 to $1.5 \mathrm{~L} / \mathrm{min}(0.75 \mathrm{MPa})$		
Shell Test Pressure		1.75 MPa			2.4 MPa		
Flow Rate(L/min) ※Pressure Difference is 0.2 MPa between P_{1} and P_{2}.		20	33	80			
Working Pressure	Cold Water	0.02 to 0.6 MPa			0 to 1.6MPa		
	Hot Water	$\begin{aligned} & 0.02 \text { to } 0.3 \mathrm{MPa}(15,20 \mathrm{~mm}) \\ & 0.02 \text { to } 0.2 \mathrm{MPa}(25 \mathrm{~mm}) \end{aligned}$					

※ Cold Water Pressure \geq Hot Water Pressure

-Basic Application:

<Automatic Mixing Valves>
Automatic mixing valves are used in hot water supply systems of hotels, beauty salons, heated swimming pools, floor heating units and central heating systems.
<Automatic Selector Valves>
Automatic selector valves are used in boiler systems to prevent heat loss.

-Features:

1. The automatic mixing valve's thermal wax element automatically adjusts hot/cold water downstream flow to a desired temperature by the actuating of the wax element.
2. The thermal wax element automatically selects the downstream port by desired temperature.
3. The open/close operations are controlled by the thermal wax element directly so there is no wiring required.
4. Bronze prevents rust contamination of the water.

Automatic Mixing Valve : Model TM Automatic Selector Valve : Model TS

-Dimensions:
Dimensions:

Nom.size		A	B	C	D	E
mm	inch					
15	$1 / 2$	60	86	15	38.5	24
20	$3 / 4$	70	96.5	17	47.5	26

-Materials:

Description	Material
Body	Bronze
Disc	Brass
Thermo Pellet	
Piston	Stainless Steel
Valve Seat	Brass

Water Hammer Eliminator : Model HA

-Operating Conditions:

MODEL		HA	
Nominal Size	mm	20	50
	inch	$3 / 4$	2
Applicable Fluid		Water	
Working Temperature		0 to $60^{\circ} \mathrm{C}$	
Working Pressure (inlet)		above 0 to 5 MPa	
30 MPa			

-Basic Application:

The Water Hammer Eliminator HA, the key component of the Assembly, was engineered for use in high-rise buildings to eliminate the back pressure of water hammering caused by stopping of the booster and transfer pumps. It can be widely used for the piping systems in industrial plants, high-rise buildings, water suppliers and hospitals.
A check valve should be installed just after the pump, also ensure that the HA Assemble is installed downstream of the first check valve. When the pump stops, the HA can successfully release water hammer pressure by discharging water from the drain port. The HA drain should be connected to a water tank or discharged to a floor trap connection.

-Features:

1. HA can successfully eliminate the noise of water hammering in 0.02 seconds.
2. HA is able to release the extra pressure of water-hammer to protect pipes, pumps, valves, fittings and other equipment from damage.
3. HA is more durable than conventional water hammer arrestors.
4. HA doesn`t need extensive water volume or pipe size/length calculations before installation.
5.20 mm HA can be used for 20 mm through 80 mm pipes.
5. 50 mm HA can be used for 100 mm and over pipes.

Water Hammer Eliminator : Model HA

MODEL HA

- Materials:

Description	Material
Water Hammer Eliminator SIZE: 3/4" \& 2"	Bronze
Backup Check Valve	Bronze, SS304

- Dimensions: MODEL HA unit:mm

Connection : JIS B 0203 \& BS21			
Nom.Size	L	Connection	
mm			
20	$3 / 4$	(181)	Rc 3/4
50	2	(214)	Rc 2

OLocal Materials:

Flange, Fitting, and Pipe	
Silent Check Valve	Selected by Locally
Ball Valve	
Needle Valve	

OSample Dimensions: minimum

Connection : JIS B 2220						
Nom.Size		A	B	C		
mm	inch		$(750) \mathrm{min}$.			
100	4	$(670) \mathrm{min}$.				
150	6	$(850) \mathrm{min}$.	$\phi 280$	$(880) \mathrm{min}$.		
Flange			JIS 10K			

Connection: ISO7005-1(BS 4504)				
Nom.Size		A	B	C
mm	inch			
100	4	$(750) \mathrm{min}$.	$\phi 220$	$(670) \mathrm{min}$.
150	6	$(850) \mathrm{min}$.	$\phi 285$	$(880) \mathrm{min}$.
Flange				PN16

- Water Hammer Characteristics:

Test Conditions : 1. Velocity in pipe $2 \mathrm{~m} / \mathrm{sec}$ 2. Vertical pipe lenght 20m (Nominal size 2", Flow rate 236L/m)

Japanese Industrial Standards Certification Factory

Water Hammer Eliminator: Operating Principles

HA Operating Principles:

HA allows up to 0.2 bars of pressure difference between the check valve chamber and the relief valve.
HA relief valve starts to discharge water to the atmosphere when the downstream pressure of HA becomes 0.2 bars higher than the upstream pressure

1. Normal Condition (Booster/Transfer Pumps is operating):

Downstream pressure after the check valve is lower than upstream pressure before the check valve.
2. Hammer Condition (Pump is stopped):

The weight of downstream water suddenly causes back flow. Backflow water punches the check valve seat causing the first noise, or shock, of water hammering.
3. Eliminate Condition (Just after first shock):

If the first shock is bigger than 0.2bars, then the HA relief valve unit starts to discharge extra pressurized water to the atmosphere in $2 / 100$ of a second until the downstream pressure becomes the same as upstream pressure.

FIG1.Nominal condition

FIG2.Eliminating condition

Water Hammer Eliminator : Installation Diagram

MODEL : HA
 INSTALLATION PIPINGDIAGRAM

Basically, two HA units should be installed: one after the transfer pump and one after the elbow.

In this case, the pump and riser pipe are very close, so it is not necessary.

If the distance between the pump and the riser is 20 m or more or if more than 3 elbows have been installed in the pipes, then two HA units should be installed.

Differences Between a Conventional Pump Room and a HA Unit Pump Room

Conventional System

1. FIG. 1 needs a lot of space for the pressure tanks.
2. The pressure tanks need yearly maintenance and are very expensive.
3. The pressure tanks can not prevent water hammering caused by check valve damage.

HA Unit System

1. In FIG.2, not much space is needed for the pump room.
2. One HA unit is enough to replace several pressure tanks!!
3. The HA unit can eliminate water hammering even when a check valve is damaged.

HA Unit: Achieves Extraordinary Cost Savings!!!

Water hammer arrestor

FIG. 2 New style of Pump Room

ALL PHOTOS: CAIRNHILL CREST CONDOMINIUM

In the case of HA units being installed near the pump, flow of inertia causes a vacuum before the check of the HA units. The 5 m distance between the pump and the HA units is called the "Inertia Zone" In this case, please install the optional HA unit.

View of a more compact pump room.

Water Hammer Eliminator: HA-UNIT

Job Ref. of Major Project

- BII PLAZA TOWER 28.12.2003

Office Tower 3Towers 40F

- Mediterania Garden Residences

Gorgeous Apartment 8T 32F

- Kelapa Gading Square II

Urban Redevelopping 14T 35F

- The Peak Residence

High-Rise Apartment 4T 35+55F

- Central Business Pluit Mega Complex 4T 24F
- Novotel Hotel

Hotel
1T 3F

- Medilranian Lagon

Big Resort

- Meditarenia Resident 2

Gorgeous Apartment 4T 28F

- Jakarta City Tower

Office Tower
1T 33F

- City of Tomorrow Apartment

Gorgeous Condo 2T 20F

- Menara Palma

Office Tower 1T 35F

- Senayan Square

Commercial Tower 1T 23F

- RS. Sentosa

Hospital 1T 7F

- Bellagio Mansion

Deluxe Apartment 1T 34F

- Housing Development Board

Singapore Gov. Flat
Gov. Flat
Ave. 35F
O Marina View Resort
Resort Residence 1T 46F

- Nagoya Lucent Tower

Commercial Tower 1T 46F

- Saeki City Water Resevoir

Water Reservoir

- Meditarania Resident Marina Deluxe Apartment 4T 35F
- The Pakubuwono Residence High-End Apartment 5T 35F
- Sudirman Park Gorgeous Condo 2T 46F
- Pondok Indan Mall II Big Shopping Mall 1T 5F
- Setiabudi Residence Gorgrous Condo
- Lindeteves Gorgeous Condo
- Sudirman Condominium Gorgeous Condo 1T 34F
- Blok M Square Shopping Mall 1T 10F
- Regata Apartment Gorgeous Apartment 4T 32F
- Water Palace Surabaya Deluxe Condo 1T 20F
- Swiss Bell Hotel Hotel 1T 10F
- Suhid Sudirman Apartment Gorgeous Condo 1T 40F
- Senayan City Mega Complex 3T 32F
- Casablanca Mansion Deluxe Apartment 1T 12F
- Taman Palm Deluxe Apartment
- Tubetu Woodworking Plant Factory

- Operating Conditions:

Product Type		Pressure vacuum breaker
Installation Type		In-line
Check valve unit		mounted
MODEL		QB
Nominal Size	mm	15
	inch	1/2
Applicable Fluid		Water
Working Temperature		0 to $85^{\circ} \mathrm{C}$
Working Pressure (inlet)		0 to 1.6 MPa

- Features:

1. Model QB is designed as a pressure vacuum breaker to install to upstream side of the Kitchen, Toilet and Bath room where the terminal stop functions are incorporated with their shower head.
2. Model QB is an in-line type of the backflow prevention device, and is not only incorporating a check valve function but also incorporating a dynamic check valve chamber. This shows that Model QB has two functions as conventional vacuum breaker and check valve.
3. Model QB can prevent backflow contamination of washing machine, garden sprinkler system etc.

Pressure Vacuum Breaker: Model QB

- Dimensions:

- Typical applications:

\diamond Pressure Vacuum Breaker
Causion: *2
From floor/ water level.to QB shall be kept at least 150 mm .

QB 1/2"

- Materials:

Description	Material
Case	Bronze
Cap	Bronze
Vacuum disc	Silicon
Check Valve	Synthetic resin
Check disc	Silicon
Spring	Stainless Steel

- Pressure Characteristics:

QB

\diamond Conventional Vacuum Breaker (without check function)

\diamond Pressure Vacuum Breaker (check valve incorporated)

