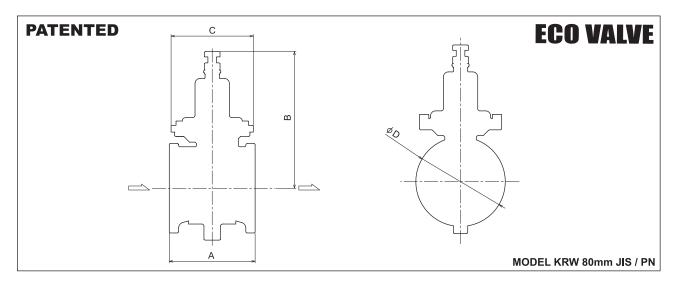


Wafer Pressure Reducing Valve: Model KRW

Operating Conditions:

MODEL		KRW						
Naminal Ciza	mm	65	80	100	125	150		
Nominal Size	inch	2-1/2		6				
Applicable Fl	uid			Water				
Working Temper	ature			0 to 80°C				
Working Pressure	(inlet)	above 0 to 1.6MPa						
Set Pressure (out	let) ※	100m	ım : 100~400kPa	i, 400∼700kPa, 7	350∼650kPa, 650 700∼1000kPa,10 900∼700kPa,700	00∼1200kPa		
Standard Set Pres	ssure	200kPa						
Shell Test Press	sure	2.4MPa						
Rated Flow Rate ((L/min)	190	430	650	1100	1300		

XChoice of spring range


Basic Application:

Pressure Reducing Valves KRW are used at various places, such as buildings, plants, hot water supply systems, etc.

- 1. KRW's special wafer design provides easy installation and reduces its weight by 50% thereby successfully shortening previous installation time by 50%.
- 2. KRW uses a balanced pressure mechanism which responds to the changes in water supply pressure.
- 3. Main parts are made of bronze and stainless steel to prevent rust contamination.
- 4. Simple disassembly and assembly features easy maintenance.
- 5. KRW can be installed either vertically or horizontally.

Wafer Pressure Reducing Valve: Model KRW

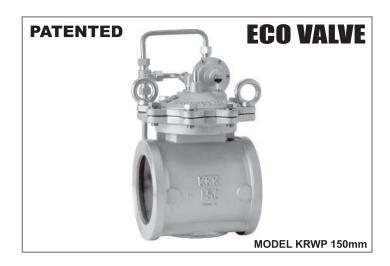
Dimensions:

unit:mm

Nom.size		А	В	С	φD		
mm	inch		В		JIS10K	PN16	
65	2-1/2	120	~200	φ 115	122	125	
80	3	140	~270	φ 133	132	142	
100	4	160	~350	Oct 177	157	160	
125	5	190	~400	Oct 200	188	192	
150	6	230	~500	Oct 237	216	216	

Caution:

This is a wafer style designed valve. Installation must be between flanges with gaskets and tightened using long bolts and nuts.


Materials:

Material			
Bronze			
Bronze / Stainless Steel*			
EPDM			
Oil Temp Wire			
FC			
Brass			
EPDM			

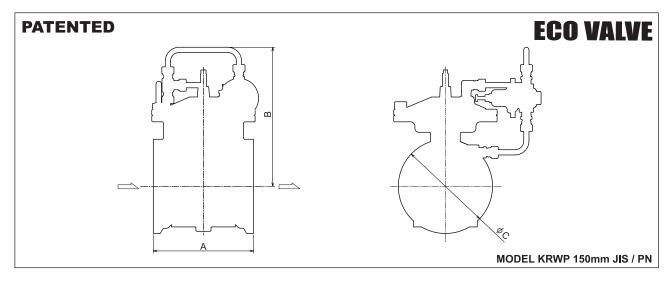
^{* 65~125}mm Bronze 150mm Stainless Steel

Wafer Pressure Reducing Valve: Model KRWP

Operating Conditions:

MODEL		KRWP							
Nominal Size	mm	65	80	100	125	150	200		
Nominal Size	inch	2-1/2	3	4	5	6	8		
Applicable Fl	uid	Water							
Working Temper	ature	0 to 80°C							
Working Pressure	(inlet)			above 0 to	o 1.6MPa				
Set Pressure (outle	et) ※ 1	1	00∼350kPa,	350∼550kPa,	550∼750kPa,	750~1200kP	а		
Standard Set Pres	ssure	200kPa							
Shell Test Press	ure	2.4MPa							

X1 Choice of spring range


Basic Application:

Pressure Reducing Valves KRWP are used with water distribution pipes, plants, etc. where large flow and space saving is required. X3

- 1. KRWP has been designed as wafer style for easy installation by reducing its weight by 50% and successfully shortening previous installation time by 50%.
- 2. Main parts are made of bronze and stainless steel to prevent rust contamination.
- 3. The open degree of the main valve is manipulated by an adjustable spindle to control water flow.
- 4. Simple disassembly and assembly features easy maintenance.
- 5. KRWP can be installed either vertically or horizontally.
- *3 Direct actuated pressure reducing valves control the downstream pressure during the condition of water flowing and under the valve closing condition.
 - Pilot operated pressure reducing valves can control the outflow pressure during the water is flowing.

Wefer Pressure Reducing Valve: Model KRWP

•Dimensions:

unit:mm

Nom.size		۸	В	φC		
mm	inch	Α	В	JIS10K	PN16	
65	2-1/2	140	(295)	122	125	
80	3	180	(315)	132	142	
100	4	190	(350)	157	160	
125	5	225	(320)	188	192	
150	6	230	(330)	216	216	
200	8	310	(390)	268	271	

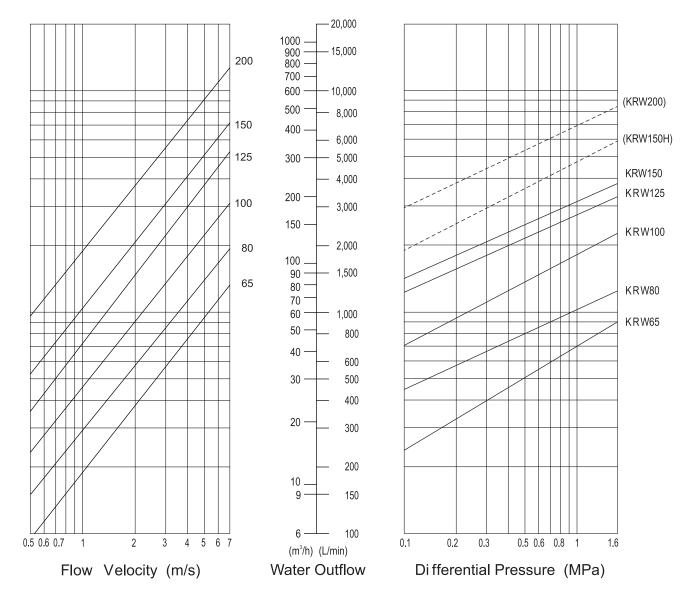
•Caution:

This is a wafer style designed valve. Installation must be between flanges with gaskets and tightened using long bolts and nuts.

In case of vertical installation, make sure all air inside the diaphragm chamber is completely discharged to the atmosphere.

Materials:

Description	Material
Body	Bronze
Cover	Bronze
Diaphragm	EPDM
Flow Regulator	Bronze
Valve Spindle	Stainless Steel
Disc	EPDM
Valve Seat	Bronze
Disc Cap	Bronze
Pilot Valve	Bronze

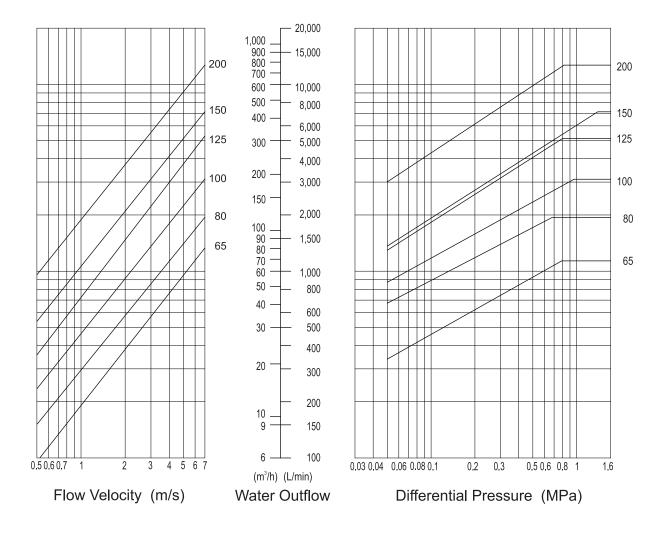


Wafer Pressure Reducing Valve: Model KRW

ECO VALVE

● Flow Characteristics:

FIG. KRW 65, 80, 100, 125, 150, 200 mm



Wafer Pressure Reducing Valve: Model KRWP

ECO VALVE

•Flow Characteristics:

FIG. KRWP 65, 80, 100, 125, 150, 200 mm

Wafer Pressure Reducing Valve: Model KRW

ECO VALVE

Pressure Reducing Valve Comparison Table

2007.01

Nominal Size	Manut	facturer	KANE	V	Υ	F
Maintananas Cina	65 m m	Α	400	550	450	500
Maintenance Size (mm) _{%1}	80mm	Α	500	550	450	500
(111117%)	100mm	Α	600	600	550	600
Product Size (mm) _{%1}		<u>B</u>	125	175	175	175
//////////////////////////////////////	65 m m	<u> </u>	120	215	220	215
		D	200	280	252	325
	Size Ra		1	3.5	3.2	4.1
		В	142	185	185	185
D	80mm	<u>C</u>	140	230	230	230
		D	270	285	263	325
V MEE -B	Size Ra		1	2.3	2.1	2.6
		<u>B</u>	160	210	210	210
C	100mm	<u>C</u>	160	260	270	260
		D	350	345	318	390
	Size Ra	rtio	1	1.9	1.8	2.1
Product Weight (kg) %1	65 m m		6.0	22.0	20.0	21.0
A	Weight Ratio		1	3.7	3.7	3.7
	80mm		8.0	22.0	22.0	22.0
	W eight Ratio		1	2.8	2.8	2.8
D. 置 (100mm		18.0	35.0	33.0	30.0
	Weight Ratio		1	1.9	1.8	1.7
Installation Man-hour	Man-hour	Ratio	1	2	2	2
Comprehensive	Space Sa	ving	Good	-	-	-
Evaluation	Ease of Op	eration	Good	-	-	-
of Maintenance	Maintenace	e Tim e	Less	-	-	-
	Casting Pro	cedure	On-site Fabrication	Sub	Subcontracted Factory	
Service Response	Delivery P	eriod		Standar	d Stock	
Corvice Response	Service Sy	/stem	Good	-	-	-
	Response Ca	apability	Good	-	=	-
Environmental Load	By Wei	ght	Less	-	-	-
\/ibwatian Naiss (db)	65mm	1	≦ 80db	≦ 70db	≦ 70db	≦ 80db
Vibration Noise (db) ※ 1	80 m m	<u>1</u>	≦ 80db	≦ 80db	≦ 80db	≦ 80db
× 1	100mi	m	≦ 80db	≦ 90db	≦ 90db	≦ 80db
Material at Material	Body	,	Bronze	Bronze	Bronze	Bronze
Material of Main Parts	Disc		EPDM	NBR	EPDM	NBR
※ 1	D ia phra	gm	EPDM	NBR	EPDM	NBR

 $[\]frakk 1$) According to catalogue data of the above companies.

[%]2) The ratio was evaluated as KRW =1.

^{*3)} The KRW has a wafer-style connection, while the others are flanged.

Wafer Pressure Reducing Valve: Model KRWP

ECO VALVE

Pressure Reducing Valve Comparison Table

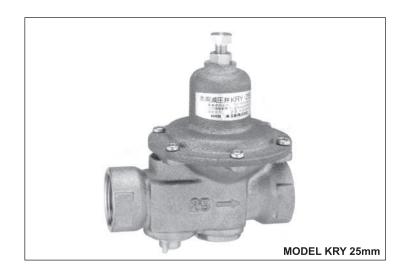
2007.01

	Manuf	acturer	KANE	С	S	W	В
Nominal Size			IVAINL	O	3	VV	В
Operating Prin	Pilot Operated /Wafer Style	Pilot Operated ✓ANSI150	Pilot Operated ✓PN16	Direct Acting ANSI125	Pilot Operated ✓PN16		
Maintenance Size (mm)	125mm 150mm	A A	600 600		*	1	
maintonanoo oizo (iiiii)	200mm	Α	700	•			
Product Size (mm)		В	192			254	
/////////	125 m m	C D	225			346	
	Canacity		325	<u>-</u>	-	841	-
	Capacity I	В	1 216	200	200	5.4	206
	150mm	С	230	280 508	280 511	280 384	286 415
	10011111	D	330	340	270	911	492
	Capacity I	Ratio	1	2.8	2.2	5.6	3.3
_ _ _ _ _ _ _ \		В	271	343	342	<u>-</u>	344
	200mm	С	310	645	635	-	500
		D	390	406	365	-	584
<u> </u>	Capacity I	Ratio	1	2.4	2.1	-	2.7
Product Weight (kg)	125mm		28			160	
	Weight Ratio		1	-	-	5.7	-
	150 m m		32	129	113	227	75
	Weight Ratio		1	4.0	3.5	7.1	2.3
	200 m r	n	57	227	227	-	125
	Weight R	Weight Ratio		4.0	4.0	-	2.2
Installtation Man-hours	Man-hour	Ratio	1		2	2	2
	Space Sa	ving	Good	-	-	-	-
Comprehensive Evaluation of Maintenance	Ease of Ope	ration	Good	-	-	-	-
Evaluation of Maintonance	Maintenance	Time	Less	-	-	-	-
	Casting Pro	cedure	On-site Fabrication	Su	bcontracted Fa	actory	
Convine Reanence	Delivery P	eriod		S	tandard Stock		
Service Response	Service Sy	stem	Good	-	-	-	-
	Response Ca	apability	Good	-	-	-	-
Environmental Load	By W eig	ght	Less	-	-	-	-
	125mm		2200	-	-	(1000)	-
Rated Flow ★2	150mm	I/m in	2400	(5300)	(3120)	(1650)	(2000)
~ ~	200mm		5200	(8700)	(6300)	-	(3333)
	Body		Bronze	Ductile Iron	Ductile Iron	Cast Iron	Ducyile
Madaglal (AA) 1 D (Cove	r	Bronze	Cast Iron	Ductile Iron	Cast Iron	Ducyile
Material of Main Parts	Disc		EPDM	Buna-N Rubber	EPDM	Hycar	NBR
	Diaphra	ıgm	EPDM	Nylon Reinforced Buna-N Rubber	EPDM	Hycar	NBR

lepha1) According to catalogue data of the above companies.

 $[\]frac{1}{2}$ 2) The ratio was evaluated as KRWP = 1.

 $[\]ensuremath{\mbox{\%}}\mbox{3)}$ The KRWP has a wafer-style connection, while the others are flanged.


^{★1:} The maintenance size A is estimated to be an additional 250mm or more over each company's product size D.

^{★2:} The rated flows of the other companies other than KANE are estimate values.

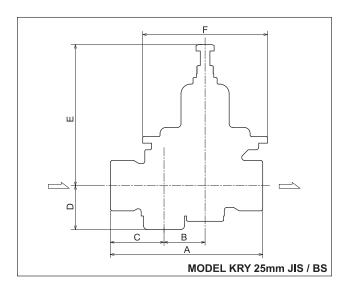
BRONZE VALVES

Direct actuated Pressure Reducing Valve: Model KRY

Operating Conditions:

MODEL	KRY								
N : 10:	mm	15	15 20 25 32 40						
Nominal Size	inch	1/2	3/4	1	1-1/4	1-1/2	2		
Applicable FI	uid			Wa	iter				
Working Temper	ature	0 to 80°C							
Working Pressure	(inlet)	above 0 to 1.6MPa							
Set Pressure (out	let) 🔆			0kPa, 350~550 0kPa, 200~350	,	,			
Standard Set Pres	ssure	200kPa							
Shell Test Press	sure		2.4MPa						
Rated Flow Rate (I	_/min)	50	50	50	100	100	120		

^{*}Choice of spring range

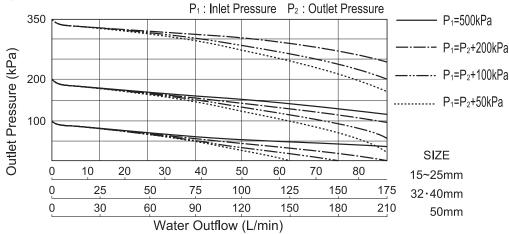

Basic Application:

KRY Pressure Reducing Valves are used at various places, such as buildings, plants, hot water supply systems, etc. The KRY valve limits the water supply pressure to keep it below a desired pressure in all cases.

- 1. Bronze is used in the body, valve spindle, and other parts to resist rust and zinc contamination. Stainless steel materials are also used in the main parts to ensure water purity.
- 2. KRY uses a balanced pressure mechanism that responds to changes in the water supply pressure to ensure stable secondary pressure.
- 3. This unit incorporates a strainer which can be cleaned easily by simply removing the strainer cap at the supply side.
- 4. KRY can be installed either vertically or horizontally.

Pressure Reducing Valve: Model KRY

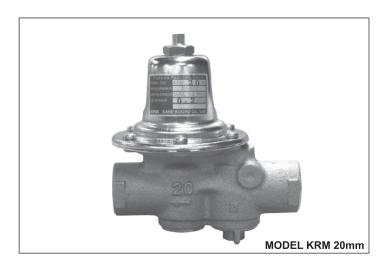
Materials:


Description	Material
Body	Bronze
Spindle	Bronze
Diaphragm	EPDM
Disc	EPDM
Disc Cap	Bronze
Cover	Bronze
Spring	Oil Temp.Wire
Strainer	Stainless Steel
Strainer Cap	Bronze
Adjustable Spindle	Brass

•Dimensions:

ı	п	n	п	ŀ٠	n	n	n

	Connection Standard:JIS B 0203 & BS 21											
Nom	Nom.size		Nom.size		D			_	Г			
mm	inch	Α	В	С	D	E	F					
15	1/2	115	32	39.5	33.2	(~109)	φ90					
20	3/4	115	32	39.5	33.2	(~109)	φ90					
25	1	115	32	39.5	33.2	(~109)	φ90					
32	1-1/4	140	48	43	47.5	(~124.5)	φ90					
40	1-1/2	140	48	43	47.5	(~124.5)	φ90					
50	2	153	53	46.5	(72.2)	(~122)	φ90					

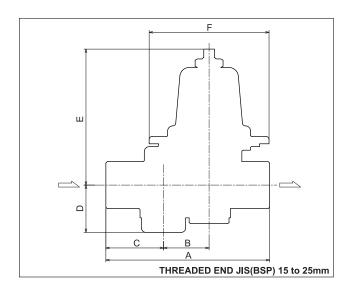

Flow Characteristics:

Each line shows the outflow differentials of inlet pressure.

Pressure Reducing Valve: Model KRM

Operating Conditions:

MODEL		KRM				
Nominal Size	mm	15 20 25				
Nominal Size	inch	1/2	3/4	1		
Applicable Fl	uid		Water			
Working Temper	rature	0 to 60°C				
Working Pressure	(inlet)	above 0 to 1.0MPa				
Set Pressure (ou	ıtlet)		100~300kPa			
Standard Set Pre	ssure	200kPa				
Shell Test Press	Shell Test Pressure		2.0MPa			
Rated Flow Rate (L/min) 50						


Basic Application:

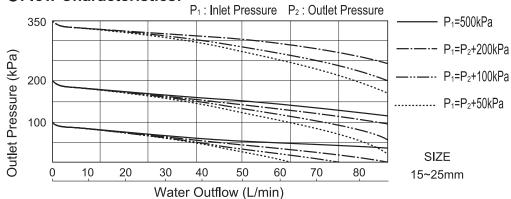
KRM Pressure Reducing Valves are used at various places, such as buildings, plants, hot water supply systems, etc. The KRM valve limits the water supply pressure to keep it below a desired pressure in all cases.

- 1. Bronze is used in the body, valve spindle, and other parts to resist rust and zinc contamination. Stainless steel materials are also used in the main parts to ensure water purity.
- 2. A balanced pressure mechanism that responds to the change of the water supply pressure is used to ensure stable secondary pressure.
- 3. This unit incorporates a strainer, so you can clean it easily by simply removing the strainer cap at the supply side.
- 4. You can install this valve either vertically or horizontally.

Pressure Reducing Valve: Model KRM

•Materials:

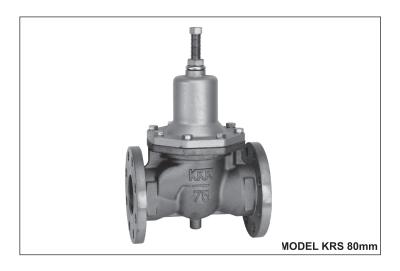
unit:mm


Description	Material
Body	Bronze
Spindle	Dzinc
Diaphragm	NBR
Disc	NBR
Disc Cap	Brass
Cover	SPCE
Spring	Oil Temp.Wire
Strainer	Stainless Steel
Strainer Cap	Brass
Adjustable Spindle	Brass

Dimensions:

Connection Standard:JIS B 0203 & BS 21										
Nom	.size	٨	ם	(_	_	г			
mm inch		A	В	C	U		F			

		Ι Λ	D				
mm	inch	A	В		U		F
15	1/2	115	32	40.5	33.2	(95.5)	(<i>φ</i> 84)
20	3/4	115	32	40.5	33.2	(95.5)	(<i>φ</i> 84)
25	1	115	32	40.5	33.2	(95.5)	$(\phi 84)$


•Flow Characteristics:

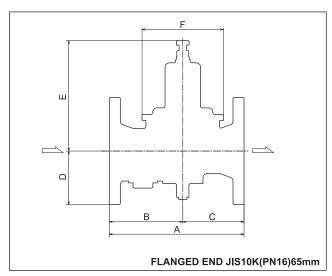
Each line shows the outflow differentials of inlet pressure.

Pressure Reducing Valve: Model KRS

Operating Conditions:

MODEL		KRS				
Nominal Size	mm	65	80	100		
Nominal Size	inch	2-1/2	3	4		
Applicable Fl	uid		Water			
Working Temperature			0 to 80°C			
Working Pressure (inlet)		above 0 to 1.6MPa				
Set Pressure (outle	o+\ .₩	65,100mm : 100~200kPa, 200~350kPa, 350~650kPa, 650~950kPa, 950~1200kPa				
Set Pressure (outle	et) :X:	80mm : 100∼400kPa,	400∼700kPa, 700∼950kPa, 95	0~1200kPa		
Standard Set Pres	sure	200kPa				
Shell Test Press	ure	2.4MPa				
Rated Flow Rate (L/min) 190 430 650						

XChoice of spring range


Basic Application:

Pressure Reducing Valves KRS are used at various places, such as buildings, plants, hot water supply systems, etc., to limit the water supply pressure and keep it below a desired pressure.

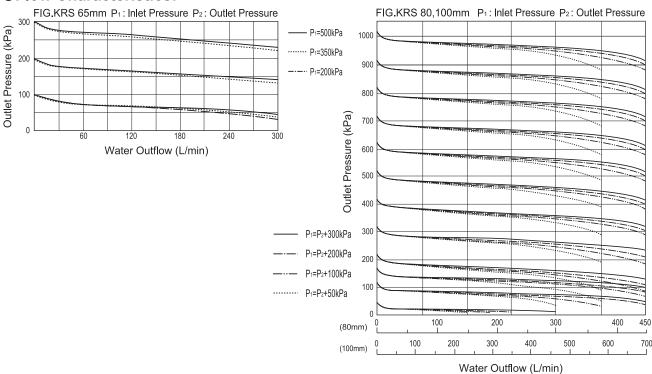
- 1. Bronze is used in the body, valve spindle and other parts to resist rust and zinc contamination.
 - Stainless steel materials are also used in the main parts to ensure water purity.
- 2. A balanced pressure mechanism that responds to the change of the water supply pressure is used to provide stable secondary pressure.
- 3. The built-in strainer can be cleaned easily by removing the strainer cap at the supply side.
- 4. KRS can be installed either vertically or horizontally.

Pressure Reducing Valve: Model KRS

•Materials:

Description	Material
Body	Bronze
Spindle	Bronze
Diaphragm	EPDM
Disc	EPDM
Disc Cap	Bronze
Cover	Bronze/FC*
Spring	Oil Temp.Wire
Strainer	Stainless Steel**
Strainer Cap	Bronze**
Adjustable Spindle	Brass

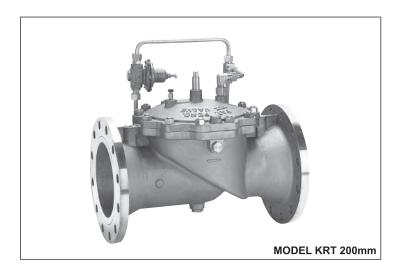
^{*65}mm Bronze 80,100mm FC **65mm only


•Dimensions:

	IIII ulliciliii										
	Connection Standard:JIS B2240										
Nom	size	Α	В	С	D	Е	F	Elongo			
mm	inch	А	Ь				Г	Flange			
65	2-1/2	220	120	100	87.5	(~188)	φ 133				
80	3	250	125	125	92.5	(~315)	Oct177	JIS10K			
100	4	290	145	145	105	(~351)	Oct200				
65	2-1/2	220	120	100	87.5	(~188)	φ 133				
80	3	254	127	127	100	(~315)	Oct177	JIS16K			
100	4	298	149	149	112.5	(~351)	Oct200				

unit:mm

Connection Standard:ISO 7005-3(BS 4504)										
Nom.size		Α	В	(D	F	F	Flange		
mm	inch			_	_ '					
65	2-1/2	224	122	102	92.5	(~188)	φ 133			
80	3	254	127	127	100	(~315)	Oct177	PN16		
100	4	298	149	149	110	(~351)	Oct200			


Flow Characteristics:

KANE KOGYO Co., Ltd. JAPAN Head office and factory: 2036 Okusa, Komaki-shi, Aichi-ken 485-0802 Japan ISO9001 / ISO14001 Certified

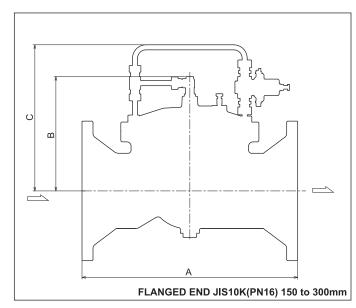
Pressure Reducing Valve: Model KRT

Operating Conditions:

MODEL KRT								
Nominal Size	mm	80	100	125	150	200	250	300
Nominal Size	inch	3	4	5	6	8	10	12
Applicable Fl	able Fluid Water							
Working Temper	ature			(to 80°C			
Working Pressure	(inlet)			abov	e 0 to 1.6N	ЛРа		
Set Pressure (out	let) ※	100~350	kPa, 350 ∼	550kPa, 55	0∼750kPa	, 750 ~ 950	kPa, 950 ∼ °	1200kPa
Standard Set Pre	200kPa							
Shell Test Press				2.4MPa				

%Choice of spring range

Basic Application:


Pressure Reducing Valves KRT are used at water distribution pipes, plants, etc. where large flow is required.

●Features:

- 1. KRT is a pilot operated pressure reducing valve, which provides greater water flow with stable pressure.
- 2. The open degree of the needle valve is adjusted with work conditions of KRT.
- 3. The main parts of KRT are made of bronze and stainless steel to prevent red rust contamination.
- 4. Simple disassembly and assembly features easy maintenance.
- 5. The open degree of the main valve can be adjusted by turning the spindle to restrain water flow.

Pressure Reducing Valve: Model KRT

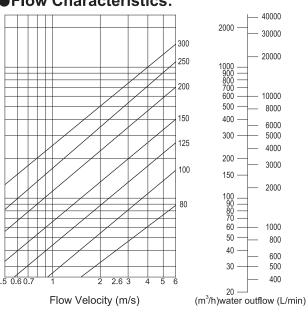
Materials:

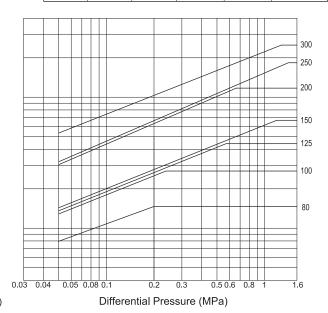
Description	Material
Body	Bronze*
Cover	Bronze*
Diaphragm	EPDM
Diaphragm Shaft	Stainless Steel
Spring	Stainless Steel
Valve Seat	Bronze
Adjustable Spindle	Brass
Strainer	Stainless Steel
Guide	Stainless Steel
Pilot Valve	Bronze
Flow Regulating	Bronze

*Body materials are changed to cast iron or ductile iron from size of 12 inchs.

Dimensions:

•	- Billichololis.										
	Connection Standard:JIS B2240										
Nom	ı.size		В	С	Florida						
mm	inch		Ь	C	Flange						
80	3	280	200	340							
100	4	340	210	350							
125	5	375	235	375							
150	6	404	210	265	JIS 10K						
200	8	510	270	350							
250	10	572	270	350							
300	12	642	445	465							


unit:mm


Connection Standard:JIS B2240										
Nom	Nom.size		В	С	Elongo					
mm	inch	A D			Flange					
150	6	408	210	265						
200	8	518	270	350	JIS 16K					
250	10	580	270	350	JIS 16K					
300	12	654	445	465						

unit:mm

Connection Standard:ISO 7005-3(BS 4504)					
Nom.size		Α	В	С	Flange
mm	inch	_ ^	В		riange
150	6	408	210	265	
200	8	518	270	350	PN16
250	10	580	270	350	FINIO
300	12	650	445	465	

•Flow Characteristics:

ISO9001 / ISO14001 Certified I

Head office and factory: 2036 Okusa, Komaki-shi, Aichi-ken 485-0802 Japan

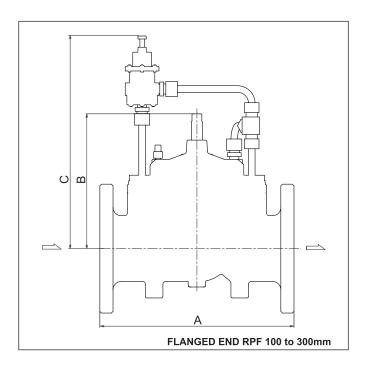
Japanese Industrial Standards Certification Factory Head office and factory: 2036 Okusa, Komaki-shi, Aichi-ken 485-0802 Japan Web site: http://www.kanevalve.com E-mail: overseasales@kanevalve.co.jp

PILOT OPERATED VALVES

Pressure Reducing Valve: Model RPF

Operating Conditions:

Ductile iron MODEL		RPF		
Naminal Cina	mm	100*	150	200
Nominal Size	inch	4	6	8
Applicable Fluid		Water		
Working Temperature		0 to 80°C		
Working Pressure (inlet)		above 0 to 25bar		
Set Pressure (outlet) ※		1.5~2.0bar, 2.0~3.5bar, 3.5~9.0bar, 9.0~12.0bar		
Standard Set Pressure		7.0bar		
Shell Test Pressure		37.5bar		


**Choice of spring range Note: * Model of full bore (flow port and nominal size are the same).

Model RPF are used at water distribution network, water system at buildings, plants, etc. where medium/ large flow, medium/ high pressure are required.

- 1. RPF is a pilot operated pressure reducing valve, which designed to prevent air remains in the flow stream, for avoid vibration, unstable downstream pressure and etc.
- 2. The flow rate of RPF can be varied by turning the flow adjusting spindle, during the main valve is not pressurized.
- 3. The body and cover of RPF ductile iron line up are coated with epoxy resin.
- 4. Air-vent cock mounted on the cover enables to release the remaining air inside of RPF easily at installation and maintenance.
- 5. Optionally, perforated strainers can be mounted before the diaphragm seat to protect the valve seat.

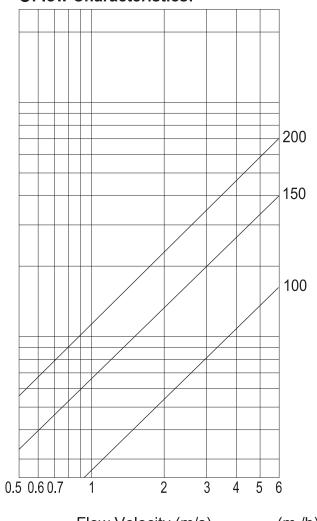
Pressure Reducing Valve: Model RPF

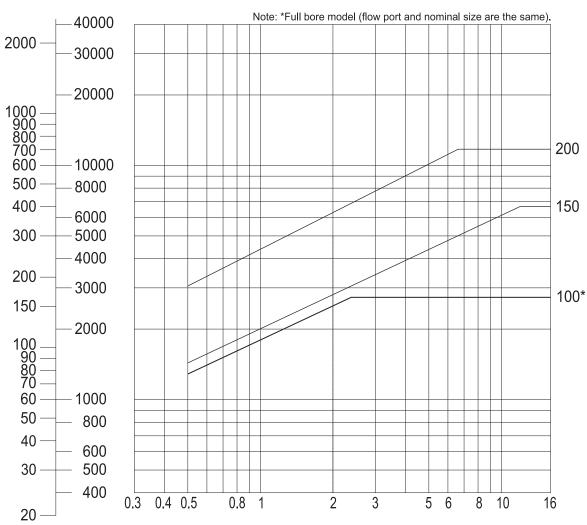
●Dimensions of Ductile iron model: unit:mm

Connection Standard: ASME B 16.5					
Nom	.size	Α	В	С	Flange
mm	inch	7	ם		i lange
100*	4	351	245	400	ANSI
150	6	392	245	400	CLASS 150
200	8	520	330	445	CLA33 130
	Con	nection S	tandard: 、	JIS B2239	
100*	4	350	245	400	
150	6	392	245	400	JIS16K
200	8	518	330	445	
100*	4	354	245	400	
150	6	400	245	400	JIS20K
200	8	526	330	445	
	Conr	ection St	andard: B	SEN 1092	-1
100*	4	346	245	400	
150	6	388	245	400	PN16
200	8	514	330	445	
100*	4	354	245	400	
150	6	400	245	400	PN25
200	8	526	330	445	

Note: *Full bore model (flow port and nominal size are the same).

Materials:


Description	Material		
Body	Ductile Iron*1		
Cover	Ductile Iron*1		
Diaphragm	EPDM		
Diaphragm Shaft	Stainless Steel		
Spring	Stainless Steel		
Valve Seat	Stainless Steel		
Adjustable Spindle	Brass		
Guide	Bronze		
Pilot Valve	Bronze		
Flow Regulator	Bronze		
Note: *1 Francis and a			


Note: *1Epoxy resin coated.

Pressure Reducing Valve: Model RPF

•Flow Characteristics:

Flow Velocity (m/s)

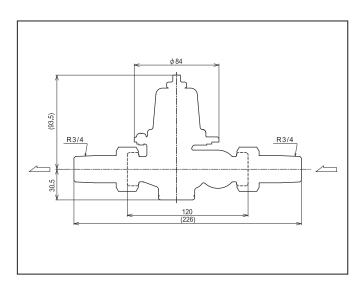
(m /h)³water outflow (L/min)

Differential Pressure (bar)

ISO9001 / ISO14001 Certified JAPAN
Japanese Industrial Standards Certification Factory Head office and factory: 2036 Okusa, Komaki-shi, Aichi-ken 485-0802 Japan

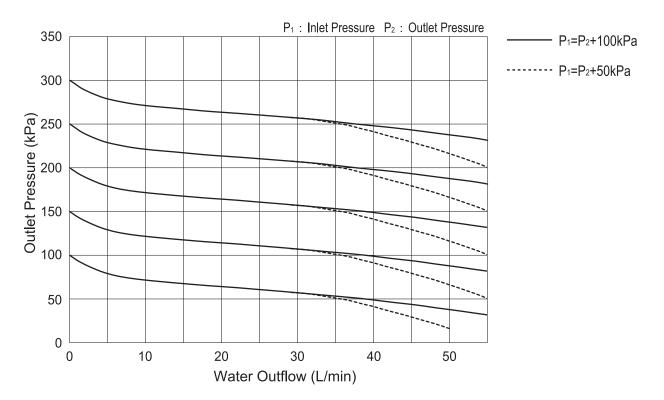
BRONZE VALVES

Direct Actuated Pressure Reducing Valve: Model KRX/-H


Operating Conditions:

MODEL		KRX		
Nominal Size	mm	20		
Nominal Size	inch	3/4		
Applicable Flu	id	Water (Cold/Hot)		
Working Pressi	ure	above 0 to 1.6 MPa		
Set Pressure (outlet)		0.1∼0.3 MPa		
Standard Set Pressure		0.2 MPa		
Shell Test Pressure		2.4MPa		
Rated Flow Rate (L/min)		55 L/min		
Temperature Range		~60°C(KRX), ~80°C(KRX-H)		
Connection		Union joint		

- 1. This valve body was specially designed to minimize water-flow noise. Model KRX is the quietest pressure-reducing valve in Japan. (P1= 0.6 MPa, P2= 0.2MPa, Flow Rate= 55L/min: 45dB)
- 2. It is suitable for hotels and condominiums.
- 3. Model KRX has adopted a union joint connection to shorten maintenance time.


Direct Actuated Pressure Reducing Valve: Model KRX/-H

Materials:

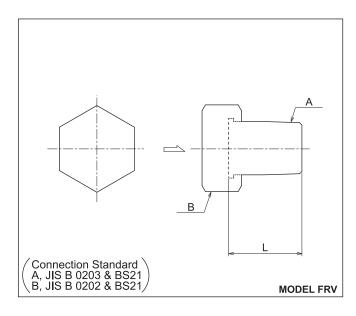
Description	Material
Body	Bronze
Spindle	Dzinc
Diaphragm	NBR
Disc	NBR
Cover	SPCE
Spring	Oil Temp.Wire
Adjustable Spindle	Brass
Strainer	Stainless Steel - POM

•Flow Characteristics:

Pressure Ratio Reducing Valve: Model FRV

Operating Conditions:

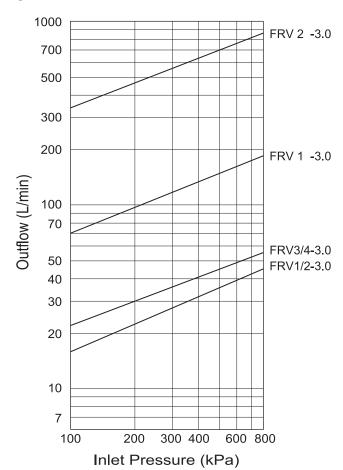
MODEL		FRV			
Naminal Siza	mm	15	20	25	50
Nominal Size	inch	1/2	3/4	1	2
Applicable Fluid		Water			
Working Temperature		0 to 60°C			
Working Pressure (inlet)		0 to 1.6MPa			


●Basic Application:

Pressure Ratio Reducing valves are used for water saving by reducing outlet pressure and decreasing water outflow, moreover it can be used where the piping space is too limited to install conventional pressure reducing valves.

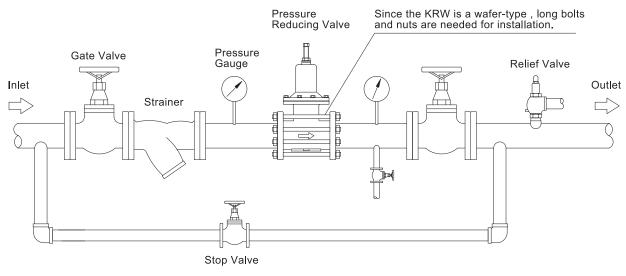
- 1. FRV is the smallest "Pressure Ratio Reducing Valve" in the world.
- 2. FRV is designed with a union nut and male threaded end so as to provide easy and quick installation.
- 3. The FRV is much more durable than previous models.
- 4. The FRV is designed for any inlet pressure to any desired outlet pressure.
- 5. FRV is the simplest device for water savings.

Pressure Ratio Reducing Valve: Model FRV

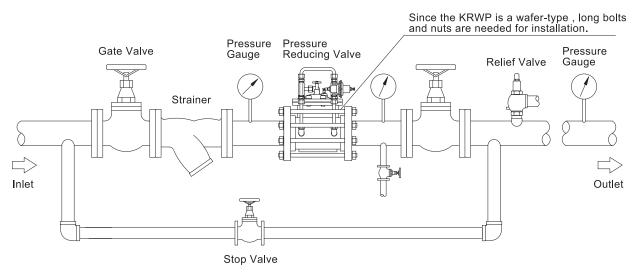

Materials:

Description	Material
Body	Bronze
Union Nut	Brass
Packing	EPDM
Disc	EPDM

•Dimensions:

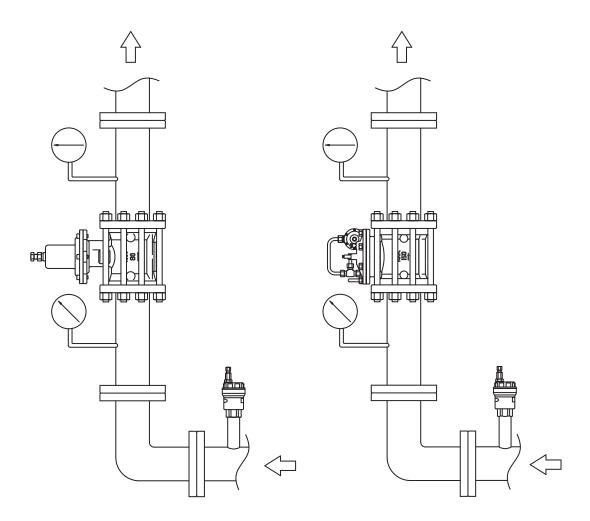

SIZE	Length (L)		
1/2"	32.0mm		
3/4"	36.5mm		
1"	58 mm		
2"	100 mm		

●Flow Characteristics: ratio1:2



MODEL: KRW INSTALLATION DIAGRAM

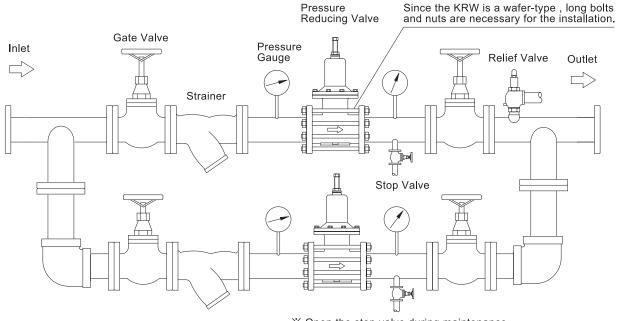
* Open the stop valve during maintenance.


MODEL: KRWP INSTALLATION DIAGRAM

※ Open the stop valve during maintenance.

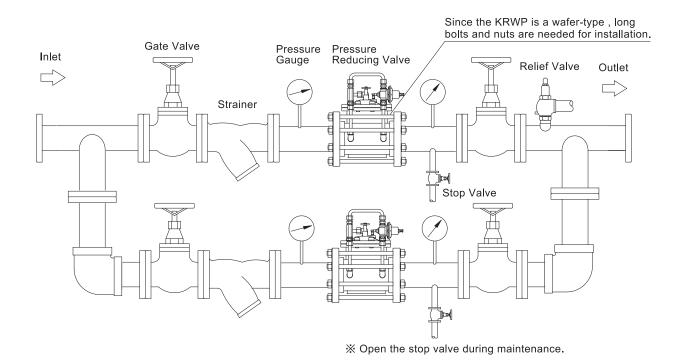
MODEL: KRW/KRWP VERTICAL INSTALLATION DIAGRAM

CAUTION:


In case of vertical installation of KRW/KRWP, it is insufficient to discharge air in the main or pilot valve by opening the air releasing cock. Unfasten several diaphragm bolts and nuts until all the air is discharged. Without the above precaution, serious vibration or noise may occur due to the incomplete discharging of the air inside the main or pilot valve and diaphragm chamber of the main valve.

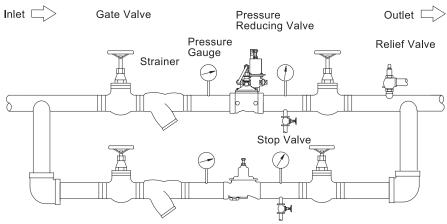
NOTE:

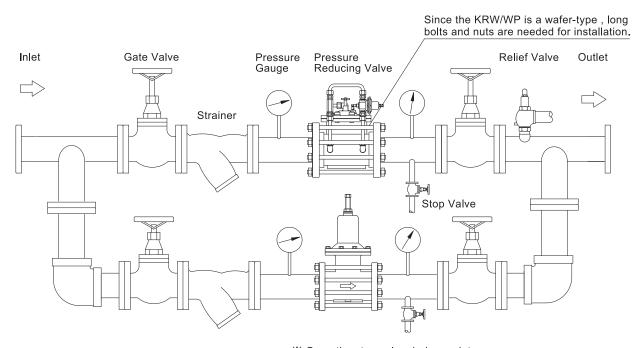
In the case of vertical KRW/KRWP installation when there is no place to install an air vent on the riser, be sure to install an air vent on the horizontal pipe before the valve.



MODEL: KRW INSTALLATION DIAGRAM

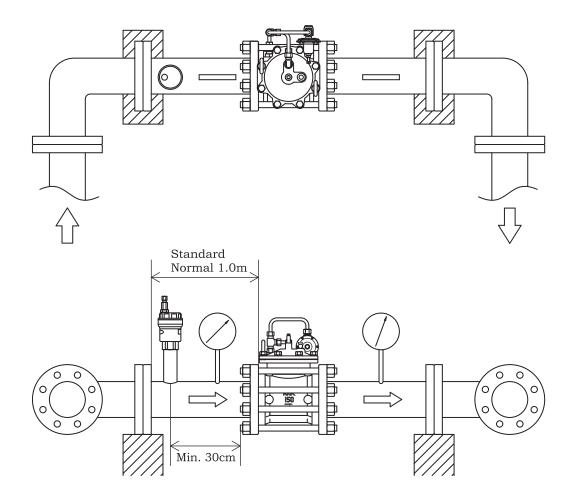
- * Open the stop valve during maintenance.
- \times Setting pressure of bypass side \geq main side +0.5-1.0bar.


MODEL: KRWP INSTALLATION DIAGRAM


Conbination Usages of Pressure Reducing Valve: Installation Diagram

CASE: KRD/ KRY CONBINATION DIAGRAM

- ※ Open the stop valve during maintenance.
- imes Setting pressure of the Direct type \geqq Pilot type +1bar.


CASE: KRWP/ KRW CONBINATION DIAGRAM

- % Setting pressure of the Direct type \geqq Pilot type +1bar.

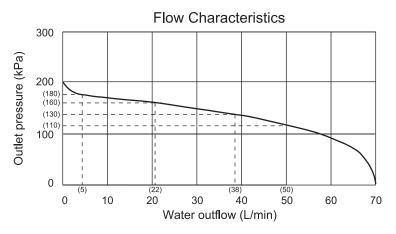
MODEL: KRWP SPECIAL INSTALLATION DIAGRAM

CAUTION:

Don't install KRWP main valves at tilted angles on horizontal pipes. This may cause serious vibration or noise due to incomplete discharging of the air inside the main or pilot valve and diaphragm chamber of the main valve.

NOTE:

In case there is no space like the above piping, keep a distance of 1.0 to $1.5 \mathrm{m}$ of piping between the elbows and the P.R.V. Install an air vent (size 1" or above) before the KRWP within a minimum distance of $30 \mathrm{cm}$.


To prevent unexpected turbulant flow, it is not recommended to install elbows within a distance that is 10 times the bore size.

Wafer Style Pressure Reducing Valve: Flow Characteristics

How to Use the Flow Characteristics Chart

The flow rate of pressure-reducing valve increases as outlet pressure decreases. When the outlet pressure becomes 200kPa, the flow rate is zero. When outlet pressure becomes 130kPa, flow rate in 38L/min. When outlet pressure becomes zero, the flow rate reaches the maximum value.

Pressure Reducing Valve

Model:KRW

Actuation of Model KRW

Outlet Pressure (P ₂)	When Outlet Pressure equals Set pressure (P _b)	When Outlet Pressure is less than Set pressure (P₀)
Inlet Pressure (P ₁)	P ₂ =P _b	P ₂ <p<sub>b</p<sub>
When Inlet Pressure is greater than Set pressure (P♭) P₁>P♭	Close	Open
When Inlet Pressure is less than Set pressure (P₀) P₁>P₀		Open

Pressure Reducing & Pressure Sustaining Valve

Model:KRWP

Actuation of Model KRWP

Outlet Pressure (P ₂)	When Outlet Pressure equals Set pressure (P _b)	When Outlet Pressure is less than Set pressure (P₀)
Inlet Pressure (P ₁)	P ₂ =P _b	P ₂ <p<sub>b</p<sub>
When Inlet Pressure is greater than Set pressure (P₃) P₁>P₃	Close	Open
When Inlet Pressure equals or is less than Set pressure (Pa) P1 <pa;p1>Pa</pa;p1>	Close	Close

Pa:Set Sustained Pressure P

Pb:Set Outlet Pressure

BRONZE VALVES

Wafer Style Pressure Reducing Valve: Installation Note

CAUTIONS: (See installation diagrams)

1. Bypass Pipe

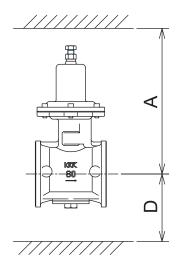
A bypass pipe, necessary to facilitate cleaning or maintenance of the pipes, should be installed as shown.

2. Straight Pipe

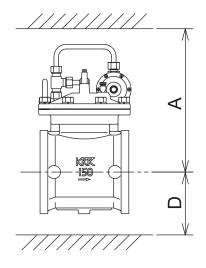
A straight pipe should be installed before the main valve to secure stable operation of the valve. The length of the straight pipe should be 10 times the pipe bore size to prevent turbulant flow.

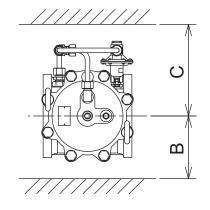
3. Air Vent

An air vent should be installed before the main valve to discharge all the air to prevent vibration and noise in the system.


4. Pressure Gauge

Pressure gauges should be installed at the inlet side and the outlet side of the main valve, or downstream of the bypass pipe where the gauge can be easily read.

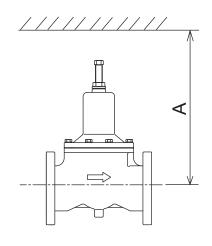

5. Maintenance Spaces for KRW,KRWP,DRWP,DHWP,DMWP Maintenance spaces should be as shown below.


MODEL: KRW

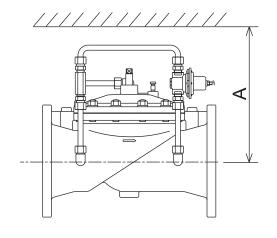
		Unit : mm
Size	Α	D
65	400	400
80	500	400
100	600	450
125	700	450
150	800	500

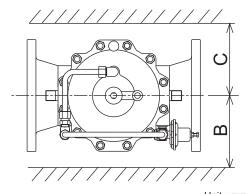
MODEL: KR/DR/DH/DMWP

				Unit : mm
Size	Α	В	С	D
65	600	400	450	450
80	600	400	450	450
100	600	450	500	500
125	600	450	500	500
150	600	500	500	500
200	700	500	600	600


BRONZE VALVES

Flanged type Pressure Reducing Valve: Installation Note


6. Maintenance Space for KRS,KRT Maintenance space should be as below:


MODEL: KRS

	Unit : mm	
Size	Α	
65	700	
80	700	
100	800	

MODEL: KRT

			Unit : mm
Size	Α	В	С
150	1200	900	900
200	1400	1000	1000
250	1500	1200	1200
300	1600	1300	1300

BRONZE VALVES

How to Read Flow Characteristics Charts of Pressure Reducing Valves

1. About Pressure Reducing Valves:

Pressure reducing valves are used to reduce the inlet pressure, no matter how high it is, to an outlet pressure which shall not be higher than a preset value. When all downstream valves are fully closed, there is no flow (Q), and the outlet pressure (P2) equals the value of the preset pressure. When downstream valves are partially open, liquid starts to flow, and the outlet pressure becomes lower than the preset value. If the downstream valves open wider, the flow rate (Q) increases and the outlet pressure becomes lower.

2. Conditions: (see Fig.1)

Model: KRW Size: 100mm Inlet Pressure (P₁): 600kPa Preset Pressure (P₂): 400kPa

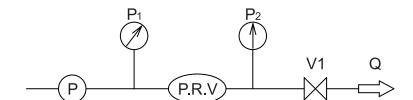
The differential pressure of P₁ and P₂ calculation is below:

$$P_1-P_2=600-400=200$$
kPa

Please look at the line $P_1=P_2+200$ kPa on the chart, read the (100mm) scale for the flow rate.

If the differential pressure is 300kPa, please look at the line.

$$P_1 = P_2 + 300 \text{kPa}$$


If the differential pressure is 500kPa, please look at the line.

$$P_1 = P_2 + 300 \text{kPa}$$

This is because when the differential pressure is over 300kPa, the flow characteristic line is nearly equal to the $P_1=P_2+300\text{kPa}$ line.

3. How to read flow characteristic charts: (an example)

If the flow rate is 0L/min, (Valve V1 is closed), the outlet pressure is 410kPa. If the flow rate is 400L/min, the outlet pressure is 360kPa. If the flow rate is 600L/min, the outlet pressure is 340kPa.

Inlet Pressure P ₁ (kPa)	Outlet Pressure P ₂ (kPa)	Flow Rate Q(L/min)	
600	410	0	
600	360	400	
600	340	600	

Flow Charactristic Chart of Pressure Reducing Valves: Model KRW

Flow Characteristics:

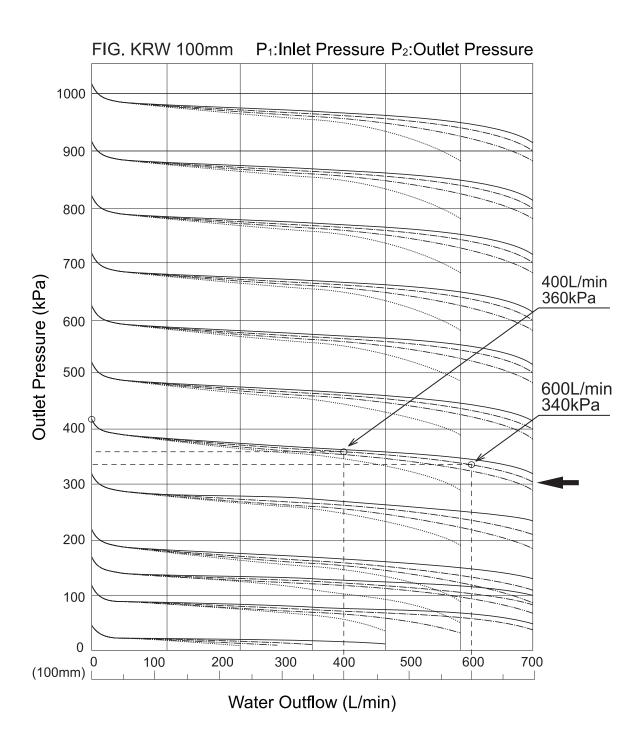


FIG.1 Flow Characteristics Chart of Pressure Reducing Valves

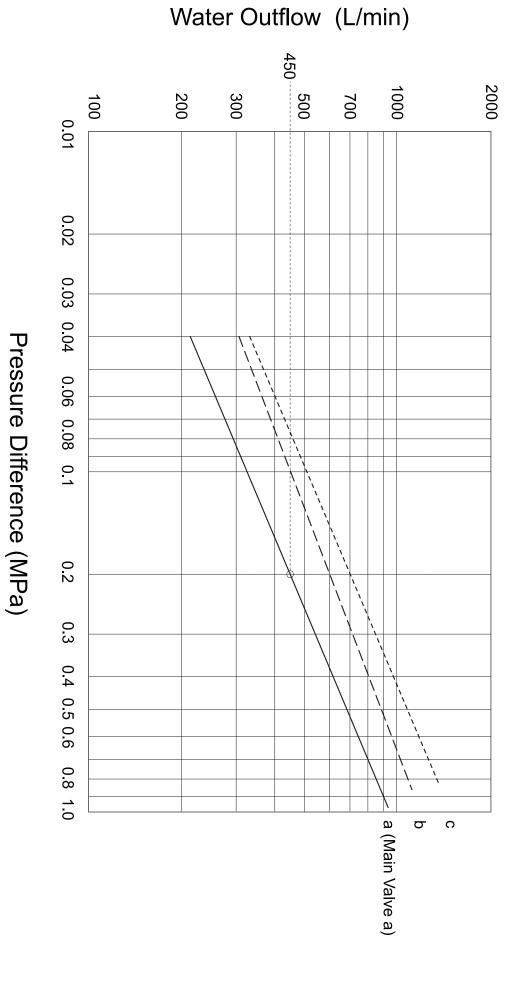
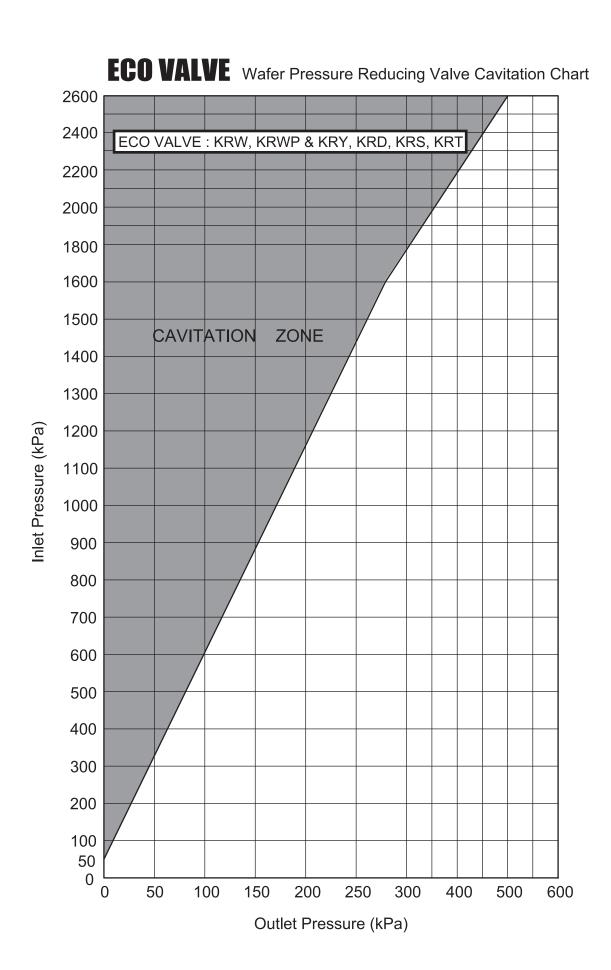



Fig.2 Flow Characteristics of Main Valve

ECO VALVE Water Pressure Reducing Valve Cavitation Chart

Water Style Control Valve:

KRW/KRWP/DRWP

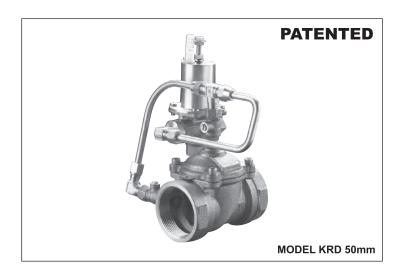
Job Ref. of Major Project

- Meditarania Resident Marina Deluxe Apartment 4T 35F
- Plaza IndonesiaMega Complex2T 48+47F
- Blok M Square Shopping Mall1T 10F
- The Raintree Condominium Gorgeous Condo 3T 18F
- The Metropolitan Condominium Gorgeous Condo 2T 45F
- The Sail Marina Bay High-End Condo
 2T 63+70F
- Marina Sand Integrated Resort(CASINO) Mega Entertain Complex
- Marunouchi Trust Tower Main BLD Commercial/Hotel 1T 37F
- N.Y.K Line Building
 Office Tower 1T 15F
- Oguchi Junior High School Public School
 1T 3F
- Aeon Odaka Shpping Mall Shopping Mall
 1T 3F
- Sumitomo Realty & Development Yotsuya BLD
 Office Tower
 1T 9F
- Sumitomo Realty & Development Chiyoda First BLD
 Office Tower
 1T 14F
- Park Homes Shin Urayasu
 Deluxe Apartment
 1T
 14F
- Osaki 1 chome Project
 Mega Complex
 1T 18F
- Kameria Hospital Hospital1T 3F
- Mihama Nuclear Power Plant

- Susca Medan Gorgeous Apartment
- 24 Storey Condominium Gorgeous Condo 2T 24F
- Metz Condominium
 Gorgeous Condo
 1T 28F
- Meditarenia Resident 2
 Gorgeous Apartment 4T 28F
- Jakarta City Tower
 Office Tower
 1T 33F

Pressure Reducing Valve: Model KRS, KRT, KRTS

著名物件納入実績 減圧弁: KRS/KRT/KRTS


- 台北国際金融センター101
- 台北県政府各庁舎
- 台大会議センター
- 台中新光人寿
- 長栄桂冠ホテル
- 彰化基督病院
- 国泰病院
- 西園病院
- 聖功病院
- 赤十字
- 台湾大学
- 元智大学
- 中華電信
- 士林地方裁判所
- 国泰天母ショッピングセンター
- 西湖清境
- 新竹金竹広場
- 法鼓山
- 統一高島屋デパート
- 婦幼病院
- 精英電脳企業本部
- 亜東技術学院

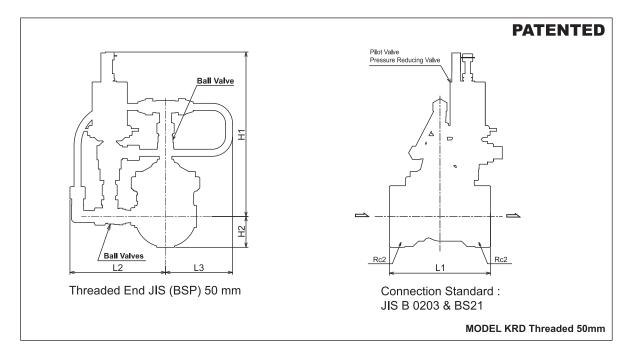
- 愛・地球博(愛知万博)
- 紅屋町再開発
- 金地国際ビル
- 中関村金融センター
 - 善導寺
 - 真如苑
 - 明基電脳
 - 倫飛電脳
 - 大都市H21
 - 新光A8
 - 海悦花園
 - 宇開発住宅マンション
 - 民頓華楼
 - 観景住宅華厦
 - 園霖ホテル
 - 高雄県政府各庁舎
 - 興懋華苑
 - 央視大楼
 - 銀泰センター
 - 玉潭区住宅マンション
- Golden Hill Park Condominium
- Marco Polo Hotel
- Horizon Green
- Meriden Condominium
- Newton Condominium
- (Government / Public Utility Board)
- Nee Soon
- Spring Leaf Road
- Jalan Chengkek
- Holland Grove
- Grove Avenue
- Mediterania Garden Residence
- Grand Copthorne Hotel
- Central Business District

BRONZE VALVES

Constant Pressure Reducing Pilot Operated Valve: Model KRD-(C/H)

Operating Conditions:

MODEL	KRD (C/H)		
Nominal Size	40,50mm		
Applicable Fluid	Water(Cold/Hot)		
Working Temperature	0 to 60°C KRD(C), 0 to 90°C KRD(H)		
Working Pressure (inlet)	0.15 to 1.6MPa		
Set Pressure (outlet)	0.1 to 1.0MPa		
Standard Set Pressure	0.3MPa		
Shell Test Pressure	2.4MPa		


Basic Application:

KRD units are used in hotels, hospitals and condominiums where a stable pressure of cold and hot water supply is required under any conditions. In cases where water heaters and pumps are used, the increase and decrease of outflow temperature is also caused by the fluctuation of outlet pressure. It is possible to solve the above problems by installing a KRD on all water pipes and hot water pipes before taps and showers.

- 1. The KRD is a pilot operated pressure reducing valve that provides greater flow with constant pressure.
- 2. The open degree of the needle valve has been set to maintain a stable outlet pressure to within 6% of the outlet pressure fluctuation.
- 3. KRD has low head loss and provides fixed pressure from little flow to great flow.
- 4. Outlet pressure can be easily set from 0.1MPa to 1.0MPa. (Set pressure scale indicated)
- 5. The main parts of the KRD are made of bronze and stainless steel to prevent rust contamination.

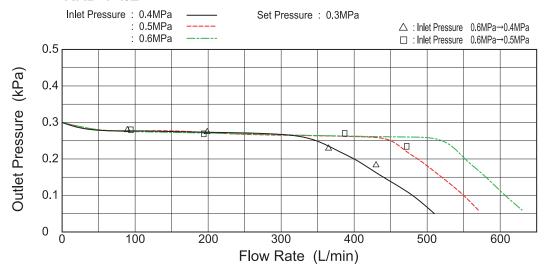
Constant Pressure Reducing Pilot Operated Valve: Model KRD-(C/H)

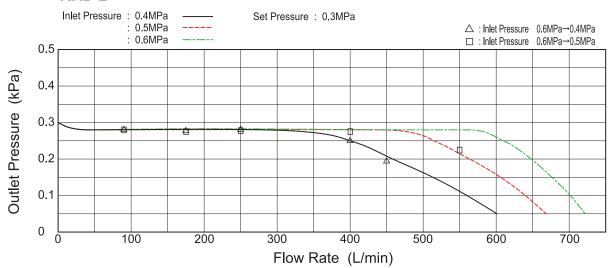
Materials:

Description	Material	
Body	Bronze	
Diaphragm	EPDM/FKM	
Spring	Stainless Steel	
Cover	Bronze	
Pipe	PA/Copper	

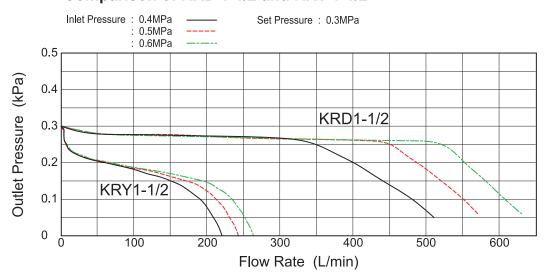
Dimensions:

Connection Standard:JIS B 0203 & BS21						
Nom.size			1.0	10 10	114	110
mm	inch	L1	L2	L3	H1	H2
40	1-1/2	110	(103)	(76)	(187)	25
50	2	115	(109)	(76)	(187)	50


BRONZE VALVES


Constant Pressure Reducing Pilot Operated Valve: Model KRD-(C/H)

Flow Characteristics:


KRD 1-1/2

KRD 2

Comparison of KRD 1-1/2 and KRY 1-1/2

Constant Pressure Reducing Pilot Operated Valve: Operating Principles

KRD Operating Principles:

(Difference between conventional pressure reducing valve and KRD)

KRD operation is almost the same as conventional pressure reducing valve operation. (Conventional refers to direct actuated types)

The main feature is that the KRD is operated by a pilot system.

There is a great difference in response of valve open and close between the KRD pilot valve and that of a direct actuated type of pressure reducing valve.

The KRD successfully reduces the response to minimize fluctuation of outlet pressure.

 $F_8 (P_2 \times S_2) > F_4$

※ pilot Valve is closed

 $F_1 (P_1 \times S_1) < F_3 (P_3 \times S_3)$

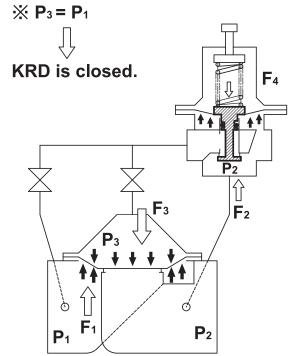


FIG 1. case of non flowing

 $F_2 (P_2 \times S_2) < F_4$ \times pilot Valve is opened

 $F_1(P_1 \times S_1) > F_3(P_3 \times S_3)$

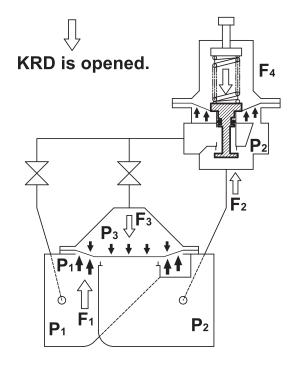
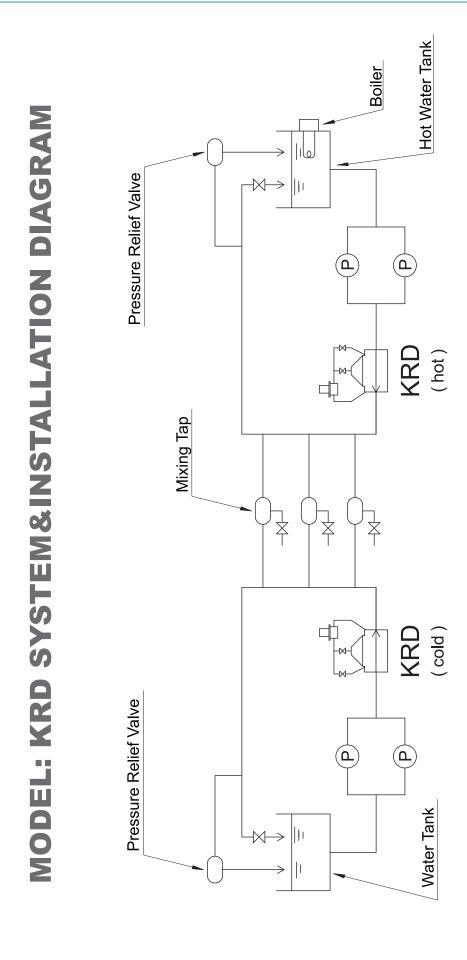
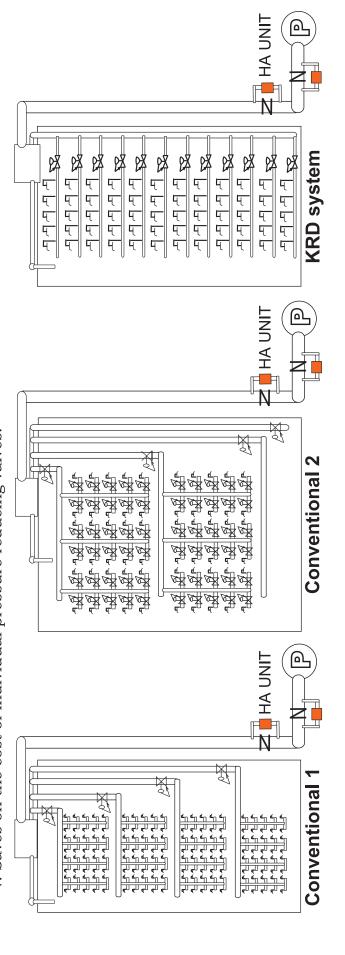



FIG 2. case of flowing

Constant Pressure Reducing Pilot Operated Valve: Operating Principles

BRONZE VALVES



* Differences between a conventional pipe system and the KRD system.

- 1. Conventional systems use at least 4 or 5 risers for gravity-fed supply
- 2. Conventional systems use zone pressure reducing systems every 3 or 5 floors.
- 3. Conventional pressure reducing can only control outlet pressure within a (30%) fluctuation.
- 4. Large valves need a large space for installation and maintenance.
- 5. Conventional systems may need individual pressure reducing valves for each flat.
- 6. The KRD system needs only one riser.
- 7. The KRD can keep outlet pressure flat.

* Benefits of the KRD system:

- 1. Saves on the cost of riser pipes and their installation costs.
- 2. Saves on the cost of larger valves such as zone pressure reducers.
- 3. Saves space and cost for installation and maintenance because of the KRD's size.
- 4. Saves on the cost of individual pressure reducing valves.

